Skip to main content
Log in

The primary productivity of benthic and planktonic algae in a prairie wetland under controlled water-level regimes

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

There have been few measurements of primary productivity by benthic (periphytic) and planktonic algae in prairie wetlands so their quantitative importance relative to other primary producers is largely unknown. We measured the daily productivity (inorganic carbon assimilation per m2 of wetland area) of phytoplankton, epipelon, epiphyton, and metaphyton in ten wetland cells in Delta Marsh, Manitoba over a five-year period. Water levels in the cells were manipulated so that some cells had normal water levels for the wetland, while water depths increased 30 cm or 60 cm in other treatments. With increasing water depth, phytoplankton productivity increased while that of epipelon, epiphyton, and metaphyton decreased. Metaphyton was the largest contributor to total algal productivity (70%), followed by epiphyton (23%), phytoplankton (6%), and epipelon (1%). Phytoplankton had the highest photosynthetic efficiency (C assimilated per unit chlorophyll), despite being a minor contributor to total productivity. Variations in P-I parameters (α, β, Ik, and Pmax) were considerable, possibly due to temporal and spatial fluctuation in the abiotic environment. Algal productivity was comparable to that of submersed and emergent macrophytes, suggesting that algae are probably important resources in supporting food webs in prairie wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adams, M. S. and W. Stone. 1973. Field Studies on photosynthesis ofCladophora glomerata (Chlorophyta) in Green Bay, Lake Michigan. Ecology 54:853–862.

    Article  Google Scholar 

  • American Public Health Association (APHA). 1980. Standard Methods for the Examination of Water and Wastewater. 15th edition. Washington, DC, USA.

  • Auer, M. T., J. M. Graham, L. E. Graham, and J. A. Kranzfelder. 1983. Factors regulating spatial and temporal distribution ofCladophora andUlothrix in the Laurentian Great Lakes. p. 135–145.In R.G. Wetzel (ed.) Periphyton of Freshwater Ecosystems. Dr. W. Junk Publishers, The Hague, The Netherlands.

    Google Scholar 

  • Batzer, D. P. and S. A. Wissinger. 1996. Ecology of insect communities in nontidal wetlands. Annual Review of Entomology 41: 75–100.

    Article  PubMed  CAS  Google Scholar 

  • Brinton, M. M., A. E. Lugo, and S. Brown. 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annual Review of Ecology and Systematics 12:123–161.

    Article  Google Scholar 

  • Browder, J. A., P. J. Gleason, and D. R. Swift. 1994. Periphyton in the Everglades: spatial variation, environmental correlates, and ecological implications. p. 379–418.In S. M. Davis and J. C. Ogden (eds.) Everglades, The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, FL, USA.

    Google Scholar 

  • Campeau, S., H. R. Murkin, and R. D. Titman. 1994. Relative importance of algac and emergent plant litter to freshwater marsh invertebrates. Canadian Journal of Fisheries and Aquatic Sciences 51:681–692.

    Article  Google Scholar 

  • Carper, G. L. and R. W. Bachmann. 1984. Wind resuspension of sediments in a prairie lake. Canadian Journal of Fisheries and Aquatic Sciences 41:1763–1767.

    Google Scholar 

  • Cole, J. J. and S. G. Fisher. 1977. Annual metabolism of a temporary pond ecosystem. The American Midland Naturalist 100: 15–22.

    Google Scholar 

  • Cronk, J. K. and W. J. Mitsch. 1994. Periphyton productivity on artificial and natural surfaces in constructed freshwater wetlands under different hydrologic regimes. Aquatic Botany 48:325–341.

    Article  Google Scholar 

  • Eaton, J. W. and B. Moss. 1966. The estimation of numbers of pigment content in epipelic algal populations. Limnology and Oceanography 11:584–595.

    Article  Google Scholar 

  • Eiseltová, M. and J. Pokorný. 1994. Filamentous algae in fish ponds of the Trebon Biosphere Reserve—ecophysiological study. Vegetatio 113:155–170.

    Google Scholar 

  • Fee, E. J. 1973. Modeling primary production in water bodies: a numerical approach that allows vertical inhomogeneities. Journal of the Fisheries Research Board of Canada 30:1469–1473.

    Google Scholar 

  • Fee, E. J., R. E. Hecky, and H. A. Welch. 1987. Phytoplankton photosynthesis parameters in central Canadian lakes. Journal of Plankton Research 9:305–316.

    Article  Google Scholar 

  • Geider, R. J. and B. A. Osborne. 1992. Algal Photosynthesis. The Measurement of Algal Gas Exchange. Chapman and Hall, New York, NY, USA.

    Google Scholar 

  • Goldsborough, L. G. and G. G. C. Robinson. 1996. Pattern in wetlands. p. 77–117.In R. J. Stevenson, M. L. Bothwell, and R. L. Lowe (eds.) Algal Ecology: Benthic Freshwater Ecosystems. Academic Press, New York, NY, USA.

    Google Scholar 

  • Goldsborough, L. G., G. G. C. Robinson, and S. E. Gurney. 1986. An enclosure/substratum system forin situ ecological studies of periphyton. Archiv für Hydrobiologie 106:373–393.

    Google Scholar 

  • Gurney, S. E. and G. G. C. Robinson. 1988. The influence of water level manipulation on metaphyton production in a temperate freshwater marsh. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 23:1032–1040.

    Google Scholar 

  • Hooper, N. M. and G. G. C. Robinson. 1976. Primary production of epiphytic algae in a marsh pond. Canadian Journal of Botany 54:2810–2815.

    Article  Google Scholar 

  • Hosseini, S. M. 1986. The effects of water level fluctuation on algal communities of freshwater marshes. Ph.D. Dissertation. Iowa State University, Ames, IA, USA.

    Google Scholar 

  • Hutchinson, G. E. 1975. A Treatise on Limnology, Volume 1. Part 1: Geography and Physics of Lakes. John Wiley and Sons, New York, NY, USA.

    Google Scholar 

  • Jones, R. C. 1984. Application of a primary production model to epiphytic algae in a shallow, eutrophic lake. Ecology 65:1895–1903.

    Article  Google Scholar 

  • Keough, J. R., M. E. Sierszen, and C. A. Hagley. 1996. Analysis of a Lake Superior coastal food web with stable isotope techniques. Limnology and Oceanography 41:136–146.

    CAS  Google Scholar 

  • Kotak, B. G. 1990. The effects of water turbulence on the limnology of a shallow, prairie wetland. M.Sc. Thesis, University of Manitoba, Winnipeg, MB, Canada.

    Google Scholar 

  • Kotak, B. G. and G. G. C. Robinson. 1991. Artificially-induced water turbulence and the physical and biological features within small enclosures. Archiv für Hydrobiologie 122:335–349.

    Google Scholar 

  • Losee, R. F. and R. G. Wetzel. 1983. Selective light attenuation by the periphyton complex. p. 89–96.In R. G. Wetzel (ed.) Periphyton of Freshwater Ecosystems. Dr W. Junk Publishers, The Hague, The Netherlands.

    Google Scholar 

  • Marker, A. F. H., C. A. Crowther, and R. J. M. Gunn. 1980. Methanol and acetone for estimating chlorophyll a and phaeopigments by spectrophotometry. Archiv für Hydrobiologie Beihefte 14:52–69.

    CAS  Google Scholar 

  • Murkin, H. R. 1989. The basis for food chains in prairie wetlands. p. 316–338.In A. van der Valk (ed.) Northern Prairie Wetlands. Iowa State University Press, Ames, IA, USA.

    Google Scholar 

  • Murkin, H. R., B. D. J. Batt, P. J. Caldwell, C. B. Davis, J. A. Kadlec, and A. G. van der Valk. 1984. Perspectives on the Delta Waterfowl Research Station—Ducks Unlimited Canada Marsh Ecology Research Program. Transactions of the North American Wildlife and Nature Research Conference 49:253–261.

    Google Scholar 

  • Pasciak, W. J. and J. Gavis. 1974. Transport limitation of nutrient uptake in phytoplankton. Limnology and Oceanography 19:881–888.

    Google Scholar 

  • Pinckney, J. and R. G. Zingmark. 1993. Photophysiological responses of intertidal benthic microalgal communities to in situ light environments: methodological considerations. Limnology and Oceanography 38:1373–1383.

    Article  Google Scholar 

  • Platt, T., C. L. Gallegos, and W. G. Harrison. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research 38:687–701.

    Google Scholar 

  • Prezelin, B. B. and A. C. Ley. 1980. Photosynthesis and chlorophyll-a fluorescence rhythms of marine phytoplankton. Marine Biology 55:295–307.

    Article  CAS  Google Scholar 

  • Reeder, B. C. and W. J. Mitsch. 1989. Seasonal patterns of planktonic and macrophyte productivity of a freshwater coastal wetland. p. 49–68.In W. J. Mitsch (ed.) Wetlands of Ohio’s coastal Lake Erie: a hierarchy of systems. Ohio Sea Grant publication, Columbus, OH, USA.

    Google Scholar 

  • Reynolds, C. S. 1984. The Ecology of Freshwater Phytoplankton. Cambridge, London, UK.

  • Richmond, K. A. 1992. A comparison of photosynthesis of metaphyton in eutrophic littoral waters with that of an acidified lake. B.Sc. Thesis, University of Manitoba, Winnipeg, MB, Canada.

    Google Scholar 

  • Robarts, R. D., D. B. Donald, and M. T. Arts. 1995. Phytoplankton primary production of three temporary northern prairie wetlands. Canadian Journal of Fisheries and Aquatic Sciences 52:897–902.

    Article  Google Scholar 

  • Robinson, G. G. C. 1988. Productivity-irradiance relationships of the algal communities in the Delta Marsh: a preliminary report. University Field Station (Delta Marsh) Annual Report 23:100–110.

    Google Scholar 

  • Robinson, G. G. C., S. E. Gurney, and L. G. Goldsborough. 1997. Response of benthic and planktonic algal biomass to experimental water level manipulation in a prairie wetland. Wetlands 17:167–181.

    Google Scholar 

  • Roos, P. J. and J. T. Meulemans. 1987. Under water light regime in a reedstand—short-term, daily, and seasonal. Archiv für Hydrobiologie 111:161–169.

    Google Scholar 

  • Savidge, G. 1988. Influences of inter- and intra-daily light-field variability on photosynthesis by coastal phytoplankton. Marine Biology 100:127–133.

    Article  Google Scholar 

  • Schalles, J. F. and D. J. Shure. 1989. Hydrology, community structure, and productivity patterns of a dystrophic Carolina Bay wetland. Ecological Monographs 59:365–385.

    Article  Google Scholar 

  • Shay, J. M. and C. T. Shay. 1986. Prairie marshes in western Canada, with specific reference to the ecology of five emergent macrophytes. Canadian Journal of Botany 64:443–454.

    Article  Google Scholar 

  • Simpson, P. S. and J. W. Eaton. 1986. Comparative studies of the submerged macrophyteElodea canadensis and filamentous green algaeCladophora glomerata andSpirogyra sp. Aquatic Botany 24:1–12.

    Article  Google Scholar 

  • Stanley, D. W. 1976. Productivity of epipelic algae in tundra ponds and a lake near Barrow, Alaska. Ecology 57:1015–1024.

    Article  Google Scholar 

  • Strickland, J. D. H. and T. R. Parsons. 1972. A Practical Handbook of Seawater Analysis, 2nd edition. Fisheries Research Board of Canada Bulletin 167, Ottawa, ON, Canada.

  • Sullivan, M. J. and C. A. Moncreiff. 1988. Primary production of edaphic algal communities in a Mississippi salt marsh. Journal of Phycology 24:49–58.

    Google Scholar 

  • Tilzer, M. M., M. Elbrachter, W. W. Gleskes, and B. Beese. 1986. Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biology 5:105–111.

    Article  Google Scholar 

  • Turner, M. A., G. G. C. Robinson, B. E. Townsend, B. J. Hann, and J. A. Amaral. 1995. Ecological effects of blooms of filamentous green algae in the littoral zone of an acid lake. Canadian Journal of Fisheries and Aquatic Science 52:2264–2275.

    Article  Google Scholar 

  • van der Valk, A. G. 1994. Effects of prolonged flooding on the distribution and biomass of emergent species along a freshwater wetland coenocline. Vegetatio 110:185–196.

    Article  Google Scholar 

  • van der Valk, A. G. and C. B. Davis. 1978. The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology 59: 322–335.

    Article  Google Scholar 

  • Vymazal, J. 1994. Algae and Element Cycling in Wetlands. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Wetzel, R. G. and G. E. Likens. 1991. Limnological Analyses, 2nd edition. Springer-Verlag, New York, NY, USA.

    Google Scholar 

  • Williams, N. J. 1978. Annual variation of photosynthetic parameters in Lake Tahoe. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 20:419–425.

    Google Scholar 

  • Wood, K. G. 1975. Photosynthesis ofCladophora in relation to light and CO2 limitation; CaCO3 precipitation. Ecology 56:479–484.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon G. C. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, G.G.C., Gurney, S.E. & Gordon Goldsborough, L. The primary productivity of benthic and planktonic algae in a prairie wetland under controlled water-level regimes. Wetlands 17, 182–194 (1997). https://doi.org/10.1007/BF03161408

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03161408

Key Words

Navigation