Skip to main content
Log in

Nuclear magnetic resonance characterization of secondary mechanisms following traumatic brain injury

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Much of the injury that occurs following a traumatic insult to the central nervous system is the result of physiological, and biochemical processes initiated by the primary traumatic event. These processes occur over a period of hours to days following the insult, and although a number of factors have been identified as being associated with this secondary injury process, their role and interrelationship with one another is unclear. Nuclear magnetic resonance spectroscopy has been utilized to characterize many of these secondary factors and their relationship to eventual neurological outcome. In particular, the role of high energy phosphates, pH, lactic acid excitatory amino acids, and magnesium has been investigated, along with pharmacotherapies directed toward altering the status of these factors following traumatic injury. This review critically examines the role that each of these factors may play in the secondary injury process, and proposes a scheme which theoretically accounts for the interrelationships among the various factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altura B. M. and Altura, B. T. (1985) New perspectives on the role of magnesium in the pathophysiology of the cardiovascular system. II: experimental aspects.Magnesium 4, 245–271.

    PubMed  CAS  Google Scholar 

  • Altura B. M., Altura B. T., and Gebrewold A. (1983) Alcohol-induced spasms of cerebral blood vessels: Relation to cerebrovascular accidents and sudden death.Science 220, 331–333.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Leefmans F. J., Giraldez F., and Gamino S. M. (1987) Intracellular free magnesium in excitable cells: its measurement and its biological significance.Can. J. Physiol. Pharm. 65, 915–925.

    CAS  Google Scholar 

  • Andersen B. J., Unterberg A. W., Clarke G. D., and Marmarou A. (1988) Effect of posttraumatic hypoventilation on cerebral energy metabolism.J. Neurosurg. 68, 601–607.

    Article  PubMed  CAS  Google Scholar 

  • Bara M. and Guiet-Bara A. (1984) Potassium, magnesium and membranes.Magnesium 3, 212–225.

    CAS  Google Scholar 

  • Bygrave F. L. (1978) Mitochondria and the control of intracellular calcium.Biol. Rev. 53, 43–79.

    Article  PubMed  CAS  Google Scholar 

  • Cavaliere F., Sciarra M., Crea M. A., Rossi M., and Proietti R. (1985) Variazioni del magnesio sierico ed urinario in pazienti traumatizzati cranici.Recenti. Prog. Med. 76, 563–566.

    PubMed  CAS  Google Scholar 

  • Chaudry I. H. (1983) Cellular mechanisms in shock and ischemia and their correction.Am. J. Physiol. 245, R117-R134.

    PubMed  CAS  Google Scholar 

  • Chaudry I. H., Clemens M. G., and Baue A. U. (1986) The role of ATP-magnesium in ischemia and shock.Magnesium 5, 211–220.

    PubMed  CAS  Google Scholar 

  • Choi D. (1987) Ionic dependence of glutamate neurotoxicity.J. Neurosci. 7, 369–379.

    PubMed  CAS  Google Scholar 

  • Cohen Y., Sanada T., Pitts L. H., Chang L.-H., Nishimura M. C., Weinstein P. R., Litt L., and James T. L. (1991) Surface coil spectroscopic imaging; time and spatial evolution of lactate production following fluid percussion brain injury.Magn. Reson. Med. 17, 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Cooper P. R. (1985) Delayed brain injury: Secondary insults, inCentral Nervous System Status Report (Becker D. P. and Povlishock, J. T., eds.), pp. 217–228, William Byrd, Bethesda, MD.

    Google Scholar 

  • Corkey B. E., Duszynski J., Rich T. L., Matschinsky B., and Williamson J. R. (1986) Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria.J. Biol. Chem. 261, 2567–2574.

    PubMed  CAS  Google Scholar 

  • Didy-Mayfield J. E. and Leslie S. W. (1991) Mechanism of inhibition of N-methyl-D-aspartate stimulated increases in free intracellular Ca2+ concentration by ethanol.J. Neurochem. 56, 1536–1543.

    Article  Google Scholar 

  • Dixon C. E., Lyeth B. G., and Povlishock, J. T. (1987) A fluid percussion model of experimental brain injury in the rat.J. Neurosurg. 65, 615–624.

    Google Scholar 

  • Ebel H. and Gunther T. (1980) Magnesium metabolism: a review.J. Clin. Chem. Clin. Biochem. 18, 257–270.

    PubMed  CAS  Google Scholar 

  • Edgar A. D., Strosznajder J., and Horrocks L. A. (1982) Activation of ethanolamine phospholipase A2 in brain during ischemia.J. Neurochem. 39, 1111–1116.

    Article  PubMed  CAS  Google Scholar 

  • Faden A. I., Demediuk P., Panter S., and Vink R. (1989) Excitatory amino acids, N-methyl-D-aspartate receptors and traumatic brain injury.Science 224, 798–800.

    Article  Google Scholar 

  • Faden A. I., Yum S. W., Lemke M., and Vink R. (1990) Effects of TRH-analog treatment on tissue cations, phospholipids, and energy metabolism after spinal cord injury.J. Pharmacol. Exp. Ther. 255, 608–614.

    PubMed  CAS  Google Scholar 

  • Flink E. B. (1986) Magnesium deficiency in alcoholism.Alcohol. Clin. Exp. Res. 10, 590–594.

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel L. and Garfinkel D. (1984) Calculation of, free-Mg2+ concentration in adenosine 5′-triphosphate containing solutions in vitro and in vivo.Biochemistry 23, 3547–3552.

    Article  PubMed  CAS  Google Scholar 

  • Gill R., Foster A. C., and Woodruff G. N. (1988) MK801 is neuroprotective in gerbils when administered during the post-ischemic period.Neuroscience 25, 847–855.

    Article  PubMed  CAS  Google Scholar 

  • Gilman A. G. (1987) G proteins: transducers of receptor generated signals.Annu. Rev. Biochem. 56, 615–649.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein M. (1990) Traumatic brain injury: A silent epidemic.Ann. Neurol. 27, 327.

    Article  PubMed  CAS  Google Scholar 

  • Gupta R. K., Benovic J. L., and Rose Z. B. (1978) The determination of the free magnesium level in the human red blood cell by31P NMR.J. Biol. Chem. 254, 6172–6176.

    Google Scholar 

  • Gupta R. K., Gupta P., Yushok W. D., and Rose Z. B. (1983) On the noninvasive measurement of intracellular free magnesium by31P NMR spectroscopy.Physiol. Chem. Phys. Med. 15, 265–280.

    CAS  Google Scholar 

  • Henneberry R. C., Novelli A., Vigano M. A., Reilly J. A., Cox J., and Lysko P. G. (1989) Energy-related neurotoxicity at the NMDA receptor: a possible role in Alzheimer’s disease and related disorders.Prog. Clin. Biol. Res. 317, 143–156.

    PubMed  CAS  Google Scholar 

  • Hoek J. E., Thomas A. P., Rooney T. A., Higashi K., and Rubin E. (1992) Ethanol and signal transduction in the liver.FASEB J. 6, 2386–2396.

    PubMed  CAS  Google Scholar 

  • Inao S., Marmarou A., Clarke D. G., Andersen B. J., Fatouros P. P., and Young H. F. (1988) Production and clearance of lactate from brain tissue, cerebrospinal fluid, and serum following experimental brain injury.J. Neurosurg. 69, 736–744.

    Article  PubMed  CAS  Google Scholar 

  • Iseri L. T. and French J. H. (1984) Magnesium: nature’s physiologic calcium antagonist.Am. Heart J. 108, 188–193.

    Article  PubMed  CAS  Google Scholar 

  • Ishige N., Pitts L. H., Pogliani L., Hashimoto T., Nishimura M. C., Bartkowski H. M., and James T. L. (1987) Effects of hypoxia on traumatic head injury in rats: Part 2. Changes in high energy phosphate metabolism.Neurosurgery 20, 854–858.

    Article  PubMed  CAS  Google Scholar 

  • Ishige N., Pitts L. H., Berry I., Nishimura M. C., and James T. L. (1988) The effects of hypovolemic hypotension on high-energy phosphate metabolism of traumatized brain in rats.J. Neurosurg. 68, 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Kandel E. R., Schwartz J. H., and Jessell T. M. (1991)Principles of Neural Science. pp. 173–193, Elsevier, New York.

    Google Scholar 

  • Kirkels J. H., Van Echteld C. J. A., and Ruigrok T. J. C. (1989) Intracellular magnesium during myocardial ischemia and reperfusion: possible consequences for postischemic recovery.J. Mol. Cell. Cardiol. 21, 1209–1218.

    Article  PubMed  CAS  Google Scholar 

  • Kushmerick M. J., Dillon P. F., Meyer R. A., Brown T. R., Krisanda J. M., and Sweeney H. L. (1986)31P NMR spectroscopy, chemical analysis, and free Mg2+ of rabbit bladder and uterine smooth muscle.J. Biol. Chem. 261, 14,420–14,429.

    CAS  Google Scholar 

  • Lawson J. W. and Veech R. L. (1979) Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions.J. Biol. Chem. 254, 6528–6537.

    PubMed  CAS  Google Scholar 

  • Lemke M., Yum S. W., and Faden A. I. (1990) Lipid alterations correlate with tissue magnesium decrease following impact trauma in rabbit spinal cord.Mol. Chem. Neuropathol. 12, 147–165.

    Article  PubMed  CAS  Google Scholar 

  • Levy D. I., Sucher N. J., and Lipton S. A. (1990) Redox modulation of NMDA receptor mediated toxicity in mammalian central neurons.Neurosci. Lett. 110, 291–296.

    Article  PubMed  CAS  Google Scholar 

  • London R. E. (1991) Methods for measurement of intracellular magnesium: NMR and fluorescence.Annu. Rev. Physiol. 53, 251–258.

    Google Scholar 

  • Max W., MacKenzie E. J., and Rice D. P. (1991) Head injuries: Costs and consequences.J. Head Trauma Rehabil. 6, 76–91.

    Article  Google Scholar 

  • Mayer M. L. and Miller R. J. (1990) Excitatory amino acid receptors, second messengers and regulation of intracellular calcium in mammalian neurons.Trends Pharm. Sci. 11, 254–260.

    Article  PubMed  CAS  Google Scholar 

  • McGuigan J. A. S., Blatter L. A., and Buri A. (1991) Use of ion selective micro-electrodes to measure intracellular free Mg2+, inMg 2+ and Excitable Membranes (Strata P. and Carbone E., eds.), pp. 1–19, Springer-Verlag, Berlin.

    Google Scholar 

  • McIntosh T. K., Faden A. I., Bendall M. R., and Vink R. (1987) Traumatic brain injury in the rat: alterations in brain lactate and pH as characterized by1H and31P NMR.J. Neurochem. 49, 1530–1540.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh T. K., Faden A. I., Yamakami I., and Vink R. (1988) Magnesium deficiency exacerbates and pretreatment improves outcome following traumatic brain injury in rats:31P magnetic resonance and behavioral studies.J. Neurotrauma 5, 17–31.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh T. K., Vink R., Noble L. J., Yamakami I. Fernyak S. E., and Faden A. I. (1989a) Traumatic brain injury in the rat; characterization of a lateral fluid percussion injury model.Neuroscience 28, 233–244.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh T. K., Vink R., Yamakami I., and Faden A. I. (1989b) Magnesium protects against neurological deficit after brain injury.Brain Res 482, 252–260.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh T. K., Vink R., Soares H.L., Hayes R. L., and Simon R. P. (1990) Effect of noncompetitive blockade ofN-methyl-d-aspartate receptors on the neurochemical sequelae of experimental brain injury.J. Neurochem. 55, 1170–1179.

    Article  PubMed  CAS  Google Scholar 

  • Mosher T. J., Williams G. D., Doumen C., LaNoue K. F., and Smith M. B. (1992) Error in the calibration of the MgATP chemical-shift limit: effects on the determination of free magnesium by31P NMR spectroscopy.Magn. Reson. Med. 24, 163–169.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll R. A., Malenka R. C., and Kauer J. A. (1990) Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system.Physiol. Rev. 70, 513–565.

    PubMed  CAS  Google Scholar 

  • Nigam R., Averdunk Y., and Gunther T. (1986) Alterations in prostanoid metabolism in rats with magnesium deficiency.Prostaglandins Leukot. Med. 23, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson P., Hillered L., Ponten U., and Ungerstedt U. (1990) Changes in cortical extracellular levels of energy related metabolites and amino acids following concussive brain injury in rats.J. Cereb. Blood Flow Metab. 10, 631–637.

    PubMed  CAS  Google Scholar 

  • Nordstrom C-H., Siesjö B. K. (1990) Neurochemical determinants of ischemic cell damage, inProtection of the Brain from Ischemia (Weinstein P. W. and Faden A. I., eds.), pp. 49–66, William and Wilkins, Baltimore, MD.

    Google Scholar 

  • Nowak L. Bregestovski P., Ascher P., Herbelt A., and Prochiantz A. (1984) Magnesium gates glutamate activated channels in mouse central neurones.Nature 307, 462–465.

    Article  PubMed  CAS  Google Scholar 

  • Petroff O. A. C., Prichard J. W., Behar K. L., Alger J. R., den Hollander J. A., and Shulman R. G. (1985) Cerebral intracellular pH by31P nuclear magnetic resonance spectroscopy.Neurology 35, 781–788.

    PubMed  CAS  Google Scholar 

  • Récasens M., Mayat E., and Guiramand J. (1991) Excitatory amino acid receptors and phosphoinositide breakdown: facts and perspectives.Curr. Asp. Neurosci. 3, 104–175.

    Google Scholar 

  • Rehncrona S., Westerberg E., Akesson B., and Siesjö B. K. (1982) Brain cortical fatty acid and phospholipids during and following complete and severe incomplete ischemia.J. Neurochem. 38, 84–93.

    Article  PubMed  CAS  Google Scholar 

  • Rubin H. (1976) Magnesium deprivation reproduces the coordinate effects of serum removal or cortisol addition on transport and metabolism in chick embryo fibroblasts.J. Cell. Physiol. 89, 613–626.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp D., Bockaert J., and Sladeczek F. (1990) Pharmacological and functional characteristics of metabotrophic excitatory amino acid receptors.Trends Pharm. Sci. 11, 508–515.

    Article  PubMed  CAS  Google Scholar 

  • Selecki B., Ring I., Simpson D. A., Vanderfield G., and Sewell M. (1981)Injuries to the Head, Spine and Peripheral Nerves. New South Wales Government Printer, NSW, Australia.

    Google Scholar 

  • Siesjö B. K. (1988) Historial overview: calcium, ischemia and death of brain cells.Ann. NY Acad. Sci. 522, 638–661.

    Article  PubMed  Google Scholar 

  • Sullivan H. G., Martinez J., Becker D. P., Miller J. D., Griffith R., and Wist A. O. (1976) Fluid percussion model of mechanical brain injury in the cat.J. Neurosurg.45, 520–534.

    Article  Google Scholar 

  • Unterberg A. W., Anderson B. J., Clarke G. D., and Marmarou A. (1988) Cerebral energy metabolism following fluid-percussion brain injury in cats.J. Neurosurg. 68, 594–600.

    Article  PubMed  CAS  Google Scholar 

  • Vink R. (1989) Phospholipase C activity reduces free magnesium concentration.Biochem. Biophys. Res. Comm. 165, 913–918.

    Article  PubMed  CAS  Google Scholar 

  • Vink R. (1993) Metabolism, inNeurobiology of Central Nervous System Trauma (Salzman S. K. and Faden A. I., eds.), Oxford University Press, Oxford. in press.

    Google Scholar 

  • Vink R. and McIntosh T. K. (1990) Pharmacological and physiological effects of magnesium on experimental traumatic brain injury.Magnesium Res. 3, 163–169.

    CAS  Google Scholar 

  • Vink R., Faden A. I., and McIntosh T. K. (1988a) Changes in cellular bioenergetic state following graded traumatic brain injury in rats: determination by phosphorus-31 magnetic resonance spectroscopy.J. Neurotrauma 5, 105–119.

    Article  PubMed  Google Scholar 

  • Vink R., McIntosh T. K., Demediuk P., Weiner M. W., and Faden A. I. (1988b) Decline in intracellular free magnesium concentration is associated with irreversible tissue injury following brain trauma.J. Biol. Chem. 263, 757–761.

    PubMed  CAS  Google Scholar 

  • Vink R., McIntosh T. K., and Faden A. I. (1988c) Treatment with the thryrotropin-releasing hormone analogue CG3703 restores magnesium homeostasis following traumatic brain injury in rats.Brain Res. 460, 184–188.

    Article  PubMed  CAS  Google Scholar 

  • Vink R., McIntosh T. K., Yamakami I., and Faden A. I. (1988d)31P NMR characterization of graded traumatic brain injury in rats.Magn. Reson. Med. 6, 37–48.

    Article  PubMed  CAS  Google Scholar 

  • Vink R., McIntosh T. K., Rhomhanyi R., and Faden A. I. (1990) Opiate antagonist nalmefene improves intracellular free magnesium, bioenergetic state and neurologic outcome following traumatic brain injury in rats.J. Neurosci. 10, 3524–3530.

    PubMed  CAS  Google Scholar 

  • Vink, R., McIntosh T. K., and Faden A. I. (1991a). Mg2+ in neurotrauma: Its role and therapeutic implications, inMg 2+ and Excitable Membranes (Strata P. and Carbone E., eds.), pp. 125–145, Springer-Verlag, Berlin.

    Google Scholar 

  • Vink R., Portoghese T. K., and Faden A. I. (1991b) η-opioid antagonist improves cellular bioenergetics and recovery after traumatic brain injury.Am. J. Physiol. 261, R1527-R1532.

    PubMed  CAS  Google Scholar 

  • Wei E. P., Lamb R. G., and Kontos H. A. (1982) Increased phospholipase C activity after experimental brain injury.J. Neurosurg. 56, 695–698.

    Article  PubMed  CAS  Google Scholar 

  • Yamakami I. and McIntosh T. K. (1989) Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres.J. Cereb. Blood Flow Metab. 9, 117–124.

    PubMed  CAS  Google Scholar 

  • Yoshida K. and Marmarou A. (1991) Effects of tromethamine and hyperventilation on brain injury in the cat.J. Neurosurg. 74, 87–96.

    Article  PubMed  CAS  Google Scholar 

  • Young W. (1992) Role of calcium in central nervous system injuries, inCentral Nervous System Trauma Status Report 1992 (Jane J. A., Anderson D. K., Torner J. C., and Young, W., eds.), pp. 9–25, Mary Ann Liebert, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author to whom all correspondence and reprint requests should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vink, R. Nuclear magnetic resonance characterization of secondary mechanisms following traumatic brain injury. Molecular and Chemical Neuropathology 18, 279–297 (1993). https://doi.org/10.1007/BF03160120

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03160120

Index Entries

Navigation