Skip to main content
Log in

Involvement of adenosine in ischemic and postischemic calcium regulation

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

In the CA1 region of the hippocampus, ischemia or high-frequency stimulation of the glutamatergic input induces neuronal calcium uptake that is reflected as a decrease of the extracellular concentration of calcium ([Ca2+]ec. In this study, the effects of theophylline on these [Ca2+]ec shifts were examined in doses (20 mg/kg iv) where theophylline is mainly acting by blocking adenosine receptors. By using calcium-sensitive microelectrodes, [Ca2+]ec was concomitantly recorded in stratum pyramidale (SP) and stratum radiatum (SR) of the CA1 in adult Wistar rats, before, during, and for 6 h after transient forebrain ischemia. During ischemia (4-vessel occlusion, 20 min), the [Ca2+]ec decrease in SR preceded (by 11± 4 s; mean ± SEM) the [Ca2+]ec decrease in SP. Administration of theophylline prior to ischemia reduced the time from vessel-occlusion to the ischemic decrease in [Ca2+]ec (from 3.0±0.3 to 0.9±0.1 min; mean±SEM;p<0.01). During electrically evoked burst firing, the [Ca2+]ec shift was augmented by theophylline in nonischemic controls (by 29±4%; mean±SEM’p<0.05). After 6 h of reflow, i.e., at a time-point when the evoked calcium uptake is enhanced, theophylline had no effect on evoked [Ca2+]ec shifts.

In summary, during ischemia the uptake of calcium into CA1 pyramidal cells started in the dendrites and preceded that in the cell bodies. Removal of adenosine inhibition by theophylline accelerated ischemic calcium uptake and enhanced electrically evoked calcium uptake in control animals. In contrast, in the postischemic phase adenosine inhibition was lost with a secondary enhancement of the evoked calcium uptake that may be one critical factor in the development of delayed neuronal death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ameri A. and Jurna I. (1991) Adenosine A1 and non-A1 receptors: intracellular analysis of the actions of adenosine agonists and antagonists in rat hippocampal neurons.Brain Res. 546, 69–78.

    Article  PubMed  CAS  Google Scholar 

  • Andiné P., Jacobson I., and Hagberg H. (1988) Calcium uptake evoked by electrical stimulation is enhanced postischemically and precedes delayed neuronal death in CA1 of rat hippocampus: involvement of N-methyl-Daspartate receptors.J. Cereb. Blood Flow Metab. 8, 799–807.

    PubMed  Google Scholar 

  • Andiné P., Rudolphi K., Fredholm B. B., and Hagberg H. (1990) Effect of propentofylline (HWA 285) on extracellular purines and excitatory amino acids in CA1 of rat hippocampus during transient ischemia.Br. J. Pharmacol. 100, 814–818.

    PubMed  Google Scholar 

  • Andiné P. and Hagberg H. (1991) Cerebral ischemia and delayed CA1 damage in the rat hippocampus: calcium, adenosine and excitatory amino acids.J. Neurochem. 57 (suppl.), S66.

    Google Scholar 

  • Andiné P., Orwar O., Jacobson I., Sandberg M., and Hagberg H. (1991a) Changes in extracellular amino acids and spontaneous neuronal activity during ischemia and extended reflow in the CA1 of the rat hippocampus.J. Neurochem. 57, 222–227.

    Article  PubMed  Google Scholar 

  • Andiné P., Orwar O., Jacobson I., Sandberg M., and Hagberg H. (1991b) Extracellular acidic sulfur-containing amino acids and γ-glutamyl peptides in global ischemia: postischemic recovery of neuronal activity is paralleled by a tetrodotoxin-sensitive increase in cysteine sulfinate in the CA1 of the rat hippocampus.J. Neurochem. 57, 230–236.

    Article  PubMed  Google Scholar 

  • Andiné P., Jacobson I., and Hagberg H. (1992) Enhanced calcium uptake by CA1 pyramidal cell dendrites in the postischemic phase despite subnormal evoked field potentials: excitatory amino acid receptor dependency and relationship to neuronal damage.J. Cereb. Blood Flow Metabol. 12, 773–783.

    Google Scholar 

  • Benveniste H., Drejer J., Schousoe A., and Diemer N. H. (1984) Elevation of the extracellular concentration of glutamate and asparate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis.J. Neurochem. 43, 1369–1374.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste H., Jörgensen M. B., Diemer N. H., and Hansen A. J. (1988) Calcium accumulation by glutamate activation is involved in hippocampal cell damage after ischemia.Acta Neurol. Scand. 78, 529–356.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste H. (1989) Brain microdialysis.J. Neurochem. 52, 1667–1679.

    Article  PubMed  CAS  Google Scholar 

  • Borrelli M. J., Carlini W. G., and Ransom B. R. (1985) A simple method for making ion-selective microelectrodes suitable for intracellular recording in vertebrate cells.J. Neurosci. Meth. 15, 141–154.

    Article  CAS  Google Scholar 

  • Bruns R. F., Lu G. H., and Pugsley T. A. (1987) Adenosine receptor subtypes: binding studies, inTopics and Perspectives in Adenosine Research (Gerlach E. and Becker B. F., eds.), pp. Springer, Berlin.

    Google Scholar 

  • Corradetti R., Lo Conte G., Moroni F., Dassani M. B., and Pepeu G. (1984) Adenosine decreases aspartate and glutamate release from rat hippocampal slices.Eur. J. Pharmacol. 104, 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Cotman C. W. and Monaghan D. T. (1987) Chemistry and anatomy of excitatory amino acid systems, inPsychopharmacology: The Third Generation of Progress (Meltzer H. Y., ed.), pp. 197–210, Raven, New York.

    Google Scholar 

  • Daval J.-L., von Lubitz D. K. J. E., Deckert J., Redmond D. J., and Marangos P. J. (1989) Protective effect of cyclohexyladenosine on adenosine A1-receptors, guanine nucleotide and forskolin binding sites following brain ischemia: a quantitative autoradiographic study.Brain Res. 491, 212–226.

    Article  PubMed  CAS  Google Scholar 

  • DeLeo J., Toth L., Schubert P., Rudolphi K., and Kreutzberg G. W. (1987) Ischemia-induced neuronal cell death, calcium accumulation, and glial response in the hippocampus of the Mongolian gerbil and protection by propentofylline (HWA 285).J. Cereb. Blood Flow. Metabol. 7, 745–751.

    CAS  Google Scholar 

  • DeLeo J., Schubert P., and Kreutzberg G. W. (1988) Protection against ischemic brain damage using propentofylline in gerbils.Stroke 19, 1535–1539.

    PubMed  CAS  Google Scholar 

  • Dolphin A. C. and Archer E. R. (1983) An adenosine agonist inhibits and a cyclic AMP analogue enhances the release of glutamate but not GABA from slices of rat dentate gyrus.Neurosci. Lett. 43, 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M. and Faull R. L. M. (1988) Neuroprotective effects of adenosine.Trends Pharmacol. Sci. 9, 193–194.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie T. V. and Hoffer B. J. (1980) Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus.Br. J. Pharmacol. 69, 59–68.

    PubMed  CAS  Google Scholar 

  • Dunwiddie T. V., Hoffer B. J., and Fredholm B. B. (1981) Alkylxanthines elevate hippocampal excitability: evidence for a role of endogenous adenosine.Naunyn-Schmiedeberg’s Arch. Pharmacol. 316, 326–330.

    Article  CAS  Google Scholar 

  • Evans M. C., Swan J. H., and Meldrum B. S. (1987) An adenosine analogue, 2-chloroadenosine, protects against long term development of ischaemic cell loss in the rat hippocampus.Neurosci. Lett. 83, 287–292.

    Article  PubMed  CAS  Google Scholar 

  • Fredholm B. B. and Dunwiddie T. V. (1988) How does adenosine inhibit transmitter release?Trends Pharmacol. Sci. 9, 130–134.

    Article  PubMed  CAS  Google Scholar 

  • Gerber U., Greene R. W., Haas H. L., and Stevens D. R. (1989) Characterization of inhibition mediated by adenosine in the hippocampus of the rat in vivo.J. Physiol. 417, 567–578.

    PubMed  CAS  Google Scholar 

  • Greene R. W. and Haas H. L. (1991) The electrophysiology of adenosine in the mammalian central nervous system.Progr. Neurobiol. 36, 329–341.

    Article  CAS  Google Scholar 

  • Hagberg H., Lehmann A., Sandberg M., Nyström B., Jacobson I., and Hamberger A. (1985) Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments.J. Cereb. Blood Flow Metabol. 5, 413–419.

    CAS  Google Scholar 

  • Hagberg H., Andersson P., Lazarewicz J., Jacobson I., Butcher S., and Sandberg M. (1987) Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia.J. Neurochem. 49, 227–231.

    Article  PubMed  CAS  Google Scholar 

  • Hagberg H., Andiné P., Fredholm B., and Rudolphi K. (1990) Effect of the adenosine uptake inhibitor propentofylline on extracellular adenosine and glutamate and evaluation of its neuroprotective efficacy after ischemia in neonatal and adult rats, inPharmacology of Cerebral Ischemia 1990 (Krieglstein J., and Oberpichler H., eds.), pp. 427–437, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart.

    Google Scholar 

  • Hansen A. J., Lauritzen M., and Wieloch T. (1988) NMDA antagonists inhibit cortical spreading depression, but not anoxic depolarization, inNeurology and Neurobiology, vol. 46: Frontiers in Excitatory Amino Acid Research (Cavalheiro E. A., Lehmann J., and Turski L., eds.), pp. 661–666, Liss, New York.

    Google Scholar 

  • Heinemann U., Stabel J., and Rausche G. (1990) Activity-dependent ionic changes and neuronal plasticity in rat hippocampus.Progr. Brain Res. 83, 197–214.

    Article  CAS  Google Scholar 

  • Höller M., Dierking H., Dengler K., Tegtmeier F., and Peters T. (1986) Effect of flunarizine on extracellular ion concentration in the rat brain under hypoxia and ischemia, inAcute Brain Ischemia—Medical and Surgical Therapy (Battistina N., Fiorani P., Courbier R., Plum F., and Fieschi C., eds.), pp. 229–236, Raven, New York.

    Google Scholar 

  • Kato H., Araki T., Hara H., and Kogure K. (1991) Sequential changes in muscarinic acetylcholine, adenosine A1 and calcium antagonist binding sites in the gerbil hippocampus following repeated brief ischemia.Brain Res. 553, 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Kostopoulos G. K. and Phillis J. W. (1977) Purinergic depression of neurons in different areas of the brain.Exp. Neurol. 55, 719–724.

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic K., Morris M. E., Reiffenstein R. J., and Ropert N. (1982) Depth distribution and mechanism of changes in extracellular K+ and Ca2+ concentrations in the hippocampus.Can. J. Physiol. Pharmacol. 60, 1658–1671.

    PubMed  CAS  Google Scholar 

  • Lambert N. A. and Teyler T. J. (1991) Adenosine depresses excitatory but not fast inhibitory synaptic transmission in area CA1 of the rat hippocamus.Neurosci. Lett. 122, 50–52.

    Article  PubMed  CAS  Google Scholar 

  • Lauritzen M., Sheardown M., and Hansen A. J. (1991) The neuroprotective effect of the NMDA antagonist MK801 and non-NMDA antagonist NBQX is not explained by an effect on anoxic depolarization, and only MK801 inhibits spreading depression.J. Cereb. Blood Flow Metabol. 11 (suppl. 2), S22.

    Google Scholar 

  • Lee K. S., Schubert P., Reddington M., and Kreutzberg G. W. (1983) Adenosine receptor density and the depression of evoked neuronal activity in the rat hippocampus in vitro.Neurosci. Lett. 37, 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Lee K. S., Tetzlaff W., and Kreutzberg W. (1986) Rapid down regulation of hippocampal adenosine receptors following brief anoxia.Brain Res. 380, 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Mager R., Ferroni S., and Schubert P. (1990) Adenosine modulates a voltage-dependent chloride conductance in cultured hippocampal neurons.Brain Res. 532, 58–62.

    Article  PubMed  CAS  Google Scholar 

  • McBain C. J., Traynelis S. F., and Dingledine R. (1990) Regional variation of extracellular space in the hippocampus.Science 249, 674–677.

    Article  PubMed  CAS  Google Scholar 

  • Mitani A., Kodoya F., and Kataoka K. (1990) Distribution of hypoxia-induced calcium accumulation in gerbil hippocampal slice.Neurosci. Lett. 120, 42–45.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan D. T. and Cotman C. W. (1986) Anatomical distribution of NMDA, kainate and quisqualate receptors, inExcitatory Amino Acid Receptors (Roberts P. J., Storm-Mathisen J., and Bradford H. F., eds.), pp. 279–300, Macmillan, London.

    Google Scholar 

  • Oláh Z., Ikeda J., Anderson W. B., and Joó F. (1990) Altered protein kinase C activity in different subfields of hippocampus following cerebral ischemia.Neurochem. Res. 15, 515–518.

    Article  PubMed  Google Scholar 

  • Peters T. (1986) Calcium in physiological and pathological cell function.Eur. Neurol. 10 (suppl. 1), 267–272.

    Google Scholar 

  • Phillis J. W. (1989) Adenosine in the control of the cerebral circulation.Cerbrovasc. Brain Metab. Rev. 1, 26–54.

    CAS  Google Scholar 

  • Phillis J. W. and O’Regan M. H. (1989) Deoxycoformycin antagonizes ischemia-induced neuronal degeneration.Brain Res. Bull 22, 537–540.

    Article  PubMed  CAS  Google Scholar 

  • Proctor W. R. and Dunwiddie T. V. (1983) Adenosine inhibits calcium spikes in hippocampal pyramidal neurons in vitro.Neurosci. Lett. 35, 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli W. A. and Brierley J. B. (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat.Stroke 10, 267–272.

    PubMed  CAS  Google Scholar 

  • Rudolphi K. A., Keil M., Westhöfer U., and Hinze H. J. (1986) Effect of theophylline on ischemically induced damage in Mongolian gerbils, inPharmacology of Cerebral Ischemia (Krieglstein J., ed.), pp. 358–362, Elsevier, Amsterdam.

    Google Scholar 

  • Rudolphi K. A., Keil M., and Hinze H.-J. (1987) Effect of theophylline on ischemically induced hippocampal damage in Mongolian gerbils: a behavioral and histopathological study.J. Cereb. Blood Flow Metabol. 7, 74–81.

    CAS  Google Scholar 

  • Rudolphi K. A., Keil M., Fastbom J. and Fredholm B. B. (1989) Ischaemic damage in gerbil hippocampus is reduced following upregualtioan of adenosine (A1) receptors by caffeine treatment.Neurosci. Lett 103, 275–280.

    Article  PubMed  CAS  Google Scholar 

  • Rudolphi K. A., Keil M., and Grome J. J. (1990) Adenosine—a pharmacological concept for the treatment of cerebral ischemia? inPharmacology of Cerebral Ischemia 1990 (Krieglstein J. and Oberpichler H., eds.), pp. 439–448, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart.

    Google Scholar 

  • Rudolphi K. A. (1991) Manipulation of purinergic tone as a mechanism for controlling ischemic brain damage, inAdenosine and Adenine Nucleotides as Regulators of Cellular Function (Phillis J. W., ed.), pp. 423–436, CRC, Boca Raton.

    Google Scholar 

  • Schubert P., Heinemann U., and Kolb R. (1986) Differential effect of adenosine on pre- and postsynaptic calcium fluxes.Brain Res. 376, 382–386.

    Article  PubMed  CAS  Google Scholar 

  • Schubert P. (1988a) Physiological modulation by adenosine: selective blockade of A1-receptors with DPCPX enhances stimulus train-evoked neuronal Ca influx in rat hippocampal slices.Brain Res. 458, 162–165.

    Article  PubMed  CAS  Google Scholar 

  • Schubert P. (1988b) Modulation of synaptically evoked neuronal calcium fluxes by adenosine, inNeurotransmitters and Cortical Function (Avoli M., Reader T. A., Dykes R. W., and Gloor T. A., eds.), pp. 471–481, Plenum, New York.

    Google Scholar 

  • Schubert P. and Kreutzberg G. W. (1990) Neuroprotective mechanisms of endogenous adenosine action and pharmacological implications, inPharmacology of Cerebral Ischemia 1990 (Krieglstein J. and Oberpichler H., eds.), pp. 417–426, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart.

    Google Scholar 

  • Schubert P., Ferroni S., and Mager R. (1991) Pharmacological blockade of Cl pumps or Cl channels reduces the adenosine-mediated depression of stimulation train-evoked Ca2+ fluxes in rat hippocampal slices.Neurosci. Lett. 124, 174–177.

    Article  PubMed  CAS  Google Scholar 

  • Scott R. H. and Dolphin A. C. (1987) Inhibition of calcium currents by an adenosine analogue 2-chloroadenosine, inTopics and Perspectives in Adenosine Research (Gerlach E., and Becker B. F., eds.), pp. 549–558, Springer-Verlag, Berlin.

    Google Scholar 

  • Siesjö B. K. and Bengtsson F. (1989) Calcium, calcium antagonists and calcium-related pathology in brain ischemia, hypoglycemia and spreading depression: A unifying hypothesis.J. Cereb. Blood Flow Metabol. 9, 127–141.

    Google Scholar 

  • von Lubitz D. K. J. E., Dambrosia J. M., Kempski O., and Redmond D. J. (1988) Cyclohexyl adenosine protects against neuronal death following ischemia in the CA1 region of gerbil hippocampus.Stroke 19, 1133–1139.

    Google Scholar 

  • Westenbroek R. E., Ahlijanian M. K., and Catterall W. A. (1990) Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons.Nature 347, 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Wieloch T., Koide T., and Westerberg E. (1986) Inhibitory neurotransmitters and neuromodulators as protective agents against ischemic brain damage, inPharmacology of Cerebral Ischemia (Krieglstein J., ed.), pp. 191–197, Elsevier, Amsterdam.

    Google Scholar 

  • Winn H. R., Morii S., Ngai A. C., and Berne R. M. (1985) The effects of theophylline, an adenosine receptor blocker, on cerebral blood flow (CBF), inAdenosine: Receptors and Modulation of Cell Function (Stefanovich, V., Rudolphi K., and Schubert P., eds.), pp. 379–390, JRL, Oxford.

    Google Scholar 

  • Wu P. H., Phillis J. W., and Thierry D. L. (1982) Adenosine receptor agonists inhibits K+ evoked Ca2+ uptake by rat brain cortical synaptosomes.J. Neurochem. 39, 700–708.

    Article  PubMed  CAS  Google Scholar 

  • Yoon K.-W. and Rothman S. M. (1991) Adenosine inhibits excitatory but not inhibitory synaptic transmission in the hippocampus.J. Neurosci. 11, 1375–1380.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author to whom all correspondence and reprint requests should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andiné, P. Involvement of adenosine in ischemic and postischemic calcium regulation. Molecular and Chemical Neuropathology 18, 35–49 (1993). https://doi.org/10.1007/BF03160021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03160021

Index Entries

Navigation