Skip to main content
Log in

Polyamine metabolism in different pathological states of the brain

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Biosynthesis of the polyamines spermidine and spermine and their precursor putrescine is controlled by the activity of the two key enzymes ornithine decarboxylase (ODC) andS-adenosylmethionine decarboxylase (SAMDC). In the adult brain, polyamine synthesis is activated by a variety of physiological and pathological stimuli, resulting most prominently in an increase in ODC activity and putrescine levels. The sharp rise in putrescine levels observed following severe cellular stress is most probably the result of an increase in ODC activity and decrease in SAMDC activity or an activation of the interconversion of spermidine into putrescine via the enzymes spermidineN-acetyltransferase and polyamine oxidase. Spermidine and spermine levels are usually less affected by stress and are reduced in severely injured areas. Changes of polyamine synthesis and metabolism are most pronounced in those pathological conditions that induce cell injury, such as severe metabolic stress, exposure to neurotoxins or seizure. Putrescine levels correlate closely with the density of cell necrosis. Because of the close relationship between the extent of poststress changes in polyamine metabolism and density of cellular injury, it has been suggested that polyamines play a role in the manifestation of structural defects. Four different mechanisms of polyamine-dependent cell injury are plausible: (1) an overactivation of calcium fluxes and neurotransmitter release in areas with an overshoot in putrescine formation; (2) disturbances of the calcium homeostasis resulting from an impairment of the calcium buffering capacity of mitochondria in regions in which spermine levels are reduced; (3) an overactivation of the NMDA receptor complex caused by a release of polyamines into the extracellular space during ischemia or after ischemia and prolonged recirculation in the tissue surrounding severely damaged areas; (4) an overproduction of hydrogen peroxide resulting from an activation of the interconversion of spermidine into putrescine via the enzymes spermidineN-acetyltransferase and polyamine oxidase. Insofar as a sharp activation of polyamine synthesis is a common response to a variety of physiological and pathological stimuli, studying stressinduced changes in polyamine synthesis and metabolism may help to elucidate the molecular mechanisms involved in the development of cell injury induced by severe stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NMDA:

N-methyl-D-aspartate

ODC:

ornithine decarboxylase

SAMDC:

S-adenosylmethionine decarboxylase

References

  • Agnati L. F., Fuxe K., Davalli P., Zini I., Corti A., and Zoli M. (1985) Striatal ornithine decarboxylase activity following neurotoxic and mechanical lesions of the mesostriatal dopamine system of the male rat.Acta Physiol. Scand. 125, 173–175.

    PubMed  Google Scholar 

  • Ali S. F., Newport G. D., Slikker W. Jr., and Bondy S. C. (1987) Effect of trimethyltin on ornithine decarboxylase in various regions of the mouse brain.Toxicol. Lett. 36, 67–72.

    PubMed  Google Scholar 

  • Andine P., Orwar O., Jacobson I. Sandberg M., and Hagberg H. (1991) Changes in extracellular amino acids and spontaneous neuronal activity during ischemia and extended reflow in the CA1 of the rat hippocampus.J. Neurochem., in press.

  • Ando M., Miwa M., Kato K., and Nagata Y. (1984) Effects of denervation and axotomy on nervous system-specific protein, ornithine decarboxylase, and other enzymes in the superior cervical sympathetic ganglion of the rat.J. Neurochem. 42, 94–100.

    PubMed  Google Scholar 

  • Arai A., Baudry M., Staubli U., Lynch G., and Gall C. (1990) Induction of ornithine decarboxylase by subseizure stimulation of the hippocampus in vivo.Mol. Brain Res. 7, 167–169.

    PubMed  Google Scholar 

  • Auer R. N., Wieloch T., Olsson Y., and Siesjö B. K. (1984) The distribution of hypoglycemic brain damage.Acta Neuropathol. 64, 177–191.

    PubMed  Google Scholar 

  • Bartolome J. V., Schweitzer L., Slotkin T. A., and Nadler J. V. (1985) Impaired development of cerebellar cortex in rats treated postnatally with a-difluoromethylornithine.Neuroscience 15, 203–213.

    PubMed  Google Scholar 

  • Baudry M., Lynch G., and Gall C. (1986) Induction of ornithine decarboxylase as a possible mediator of seizure-elicited changes in genomic expression in rat hippocampus.J. Neurosci. 6, 3430–3435.

    PubMed  Google Scholar 

  • Bell J. M., Whitmore W. L., and Slotkin T. A. (1986) Effects of α-difluoromethylornithine, a specific irreversible inhibitor of ornithine decarboxylase, on nucleic acids and proteins in developing rat brain: Critical perinatal periods for regional selectivity.Neuroscience 17, 399–407.

    PubMed  Google Scholar 

  • Bodsch W., Takahashi K., Barbier A., Ophoff B. G., Hossman K. A. (1985) Cerebral protein synthesis and ischemia.Prog. Brain Res. 63, 197–210.

    PubMed  Google Scholar 

  • Bondy S. C. and Walker C. H. (1986) Polyamines contribute to calcium-stimulated release of aspartate from brain particulate fraction.Brain Res 371, 96–100.

    PubMed  Google Scholar 

  • Bondy S. C., Mitchell C. L., Rahmaan S., and Mason G. (1987) Regional variation in the response of cerebral ornithine decarboxylase to electroconvulsive shock.Neurochem. Pathol. 7, 129–141.

    PubMed  Google Scholar 

  • Canellakis E. S., Viceps-Madore D., Kyriakidis D. A., and Heller J. S. (1979) The regulation and function of ornithine decarboxylase and of polyamines.Curr. Top. Cell. Reg. 15, 155–202.

    Google Scholar 

  • Chayen J., Pitsillides A. A., Bitensky L., Muir I. H., Taylor P. M., and Askonas B. A. (1990) T-cell mediated cytolysis: Evidence for target-cell suicide.J. Exp. Path. 71, 197–208.

    Google Scholar 

  • Cintra A., Fuxe K., Agnati L. F., Persson L., Härfstrand A., Zoli M., Eneroth P., and Zini I. (1987) Evidence for the existence of ornithine decarboxylaseimmunoreactive neurons in the rat brain.Neurosci. Lett 76, 269–274.

    PubMed  Google Scholar 

  • Coffino P. and Poznanski A. (1991) Killer polyamines?J. Cell. Biochem. 45, 54–58.

    PubMed  Google Scholar 

  • Cousin M. A., Lando D., and Moguilewsky M. (1982) Ornithine decarboxylase induction by glucocorticoids in brain and liver of adrenalectomized rats.J. Neurochem. 38, 1296–1304.

    PubMed  Google Scholar 

  • Daikuhara Y., Tamada F., Takigawa M. Takeda Y., and Mori Y. (1979) Changes in polyamine metabolism of rat liver after administration of D-galactosamine.Gastroenterology 77, 123–132.

    PubMed  Google Scholar 

  • De Kloet E. R., Cousin M. A., Veldhuis H. D., Voorhuis T. D., and Lando D. (1983) Glucocorticoids modulate the response of ornithine decarboxylase to unilateral removal of the dorsal hippocampus.Brain Res. 275, 91–98.

    PubMed  Google Scholar 

  • Dempsey R. J., Maley B. E., Cowen D., and Olson J. W. (1988) Ornithine decarboxylase and immunohistochemical location in postischemic brain.J. Cereb. Blood Flow metabol. 8, 843–847.

    Google Scholar 

  • Dempsey R. J., Carney J. M., and Kindy M. S. (1991) Modulation of ornithine decarboxylase mRNA following transient ischemia in the gerbil brain.J. Cereb. Blood Flow Metabol., in press.

  • Dempsey R. J., Roy M. W. Meyer K., Tai H. H., and Olson J. W. (1985) Polyamine and prostaglandin markers in focal cerebral ischemia.Neurosurgery 17, 635–640.

    PubMed  Google Scholar 

  • Desiderio M. A., Zini I., Davalli P., Zoli M., Corti A., Fuxe K., and Agnati L. F. (1988) Polyamines, ornithine decarboxylase, and diamine oxidase in the substantia nigra and striatum of the male rat after hemitransection.J. Neurochem. 51, 25–31.

    PubMed  Google Scholar 

  • De Vera N., Artigas F., Serratosa J., and Martinez E. (1991) Changes in polyamine levels in rat brain after systemic kainic acid administration: Relationship to convulsant activity and brain damage.J. Neurochem. 57, 1–8.

    PubMed  Google Scholar 

  • Dienel G. A. (1984) Regional accumulation of calcium in postischemic rat brain.J. Neurochem. 43, 913–925.

    PubMed  Google Scholar 

  • Dienel G. A. and Cruz N. F. (1984) Induction of brain ornithine decarboxylase during recovery from metabolic, mechanical, thermal, or chemical injury.J. Neurochem. 42, 1053–1061.

    PubMed  Google Scholar 

  • Dienel G. A., Cruz N. F., and Rosenfeld S. J. (1985) Temporal profiles of proteins responsive to transient ischemia.J. Neurochem. 44, 600–610.

    PubMed  Google Scholar 

  • Djuricic B., Assaf H. M., Lust W. D., and Drewes L. R. (1990) Release of polyamines from hippocampal slices occurs during in vitro ischemia.Iugoslav. Physiol. Pharmacol. Acta 26, 361–367.

    Google Scholar 

  • Dornay M., Gilad V. H., Shiller I., and Gilad G. M. (1986) Early polyamine treatment accelerates regeneration of rat sympathatic neurons.Exp. Neurol. 92, 665–674.

    PubMed  Google Scholar 

  • Fuller, D. J. M., Carper S. W., Clay L., Chen J.-R., and Gerner E. W. (1990) Polyamine regulation of heat-shock-induced spermidineN 1-acetyltransferase activity.Biochem. J. 267, 601–605.

    PubMed  Google Scholar 

  • Gardiner I. M. and de Belleroche J. (1990) Reversal of neurotoxin-induced ornithine decarboxylase activity in rat cerebral cortex by nimodipine. A potential neuroprotective mechanism.Stroke 21 (Suppl. IV), 93, 94.

    Google Scholar 

  • Genedani S., Bernardi M., Tagliavini S., and Bertolini A. (1989) ODC-polyamine system is involved in morphine analgesia.Life Sci. 44, 525–531.

    PubMed  Google Scholar 

  • Genedani S., Bernardi M., Botticelli A., and Bertolini A. (1985) Convulsive syndrom induced by intracerebroventricular injection of α-difluoromethylornithine in rat.Acta Pharmacol. Toxicol. 56, 250–253.

    Google Scholar 

  • Gilad G. M. and Kopkin I. J. (1979) Neurochemical aspects of neuronal ontogenesis in the developing rat cerebellum: Changes in neurotransmitter and polyamine synthesizing enzymes.J. Neurochem. 33, 1195–1204.

    PubMed  Google Scholar 

  • Gilad G. M. and Gilad V. H. (1983a) Early rapid and transient increase in ornithine decarboxylase activity within sympathetic neurons after axonal injury.Exp. Neurol. 81, 158–166.

    PubMed  Google Scholar 

  • Gilad G. M. and Gilad V. H. (1983b) Polyamine biosynthesis is required for survival of sympathetic neurons after axonal injury.Brain Res. 273, 191–194.

    PubMed  Google Scholar 

  • Gilad G. M. and Gilad V. H. (1991) Polyamines can protect against ischemiainduced nerve cell death in gerbil forebrain.Exp. Neurol. 111, 349–355.

    PubMed  Google Scholar 

  • Goto K., Ishige A. Sekiguchi K., Iizuka S., Sugimoto A., Yuzurihara M., Aburada M., Hosoya E., and Kogure K. (1990) Effects of cycloheximide on delayed neuronal death in rat hippocampus.Brain Res. 534, 299–302.

    PubMed  Google Scholar 

  • Gotti B., Duverger D., Bertin J., Carter C., DuPont R., Frost J., Gaudilliere B., MacKenzie E. T., Rousseau J., Scatton B, and Wick A. (1988) Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia.J. Pharmacol. Exp. Ther. 247, 1211–1221.

    PubMed  Google Scholar 

  • Hallmayer J., Hossmann K.-A., and Mies G. (1985) Low dose of barbiturates for prevention of hippocampal lesions after brief ischemic episodes.Acta Neuropathol. 68, 27–31.

    PubMed  Google Scholar 

  • Harman R. J. and Shaw G. G. (1981a) High-affinity uptake of spermine by slices of rat cerebral cortex.J. Neurochem. 36, 1609–1615.

    PubMed  Google Scholar 

  • Harman R. J. and Shaw G. G. (1981b) The spontaneous and evoked release of sermine from rat brain in vitro.Br. J. Pharmacol. 73, 165–174.

    PubMed  Google Scholar 

  • Hayashi Y., Hattori Y., Moriwaki A., Saeki K., and Hori Y. (1989) Changes in polyamine concentrations in amygdala-kindled rats.J. Neurochem. 53, 986–988.

    PubMed  Google Scholar 

  • Heby O. (1981) Role of polyamines in the control of cell proliferation and differentiation.Differentiation 19, 1–20.

    PubMed  Google Scholar 

  • Ikeno T. and Guroff G. (1979) The effect of vasopression on the activity of ornithine decarboxylase in rat brain and liver.J. Neurochem. 33, 973–975.

    PubMed  Google Scholar 

  • Iqbal Z. and Koenig N. H. (1985) Polyamines appear to be second messengers in mediating Ca2+ fluxes and neurotransmitter release in potassium-stimulated synaptosomes.Biochem. Biophys. Res. Comm. 133, 563–573.

    PubMed  Google Scholar 

  • Jänne J., Pösö H., and Raina A. (1978) Polyamines in rapid growth and cancer.Biochim. Biophys. Acta 473, 241–293.

    PubMed  Google Scholar 

  • Jasper T. W., Luttge W. G., Benton T. B., and Garnica A. D. (1982) Polyamines in the developing mouse brain.Dev. Neurosci. 5, 233–242.

    PubMed  Google Scholar 

  • Jensen J. R., Lynch G., and Baudry M. (1987) Polyamines stimulate mitochondrial calcium transport in rat brain.J. Neurochem. 48, 765–772.

    PubMed  Google Scholar 

  • Kanje M., Fransson I., Edström A., and Löwkvist B. (1986) Ornithine decarboxylase activity in dorsal root ganglia of regenerating frog sciatic nerve.Brain Res. 381, 24–28.

    PubMed  Google Scholar 

  • Kirino T., Tamura A., and Sano K. (1986) A reversible type of neuronal injury following ischemia in the gerbil.Stroke 17, 455–459.

    PubMed  Google Scholar 

  • Kleihues P., Hossmann K.-A., Pegg A. E., Kobayashi K., and Zimmermann V. (1975) Resuscitation of the monkey brain after one hour of complete ischemia. III. Indications of metabolic recovery.Brain Res. 95, 61–73.

    PubMed  Google Scholar 

  • Koenig H., Goldstone A. D., and Lu C. Y. (1983a) Blood brain barrier breakdown in brain edema following cold injury is mediated by microvascular polyamines.Biochem. Biophys. Res. Commun. 116, 1039–1048.

    PubMed  Google Scholar 

  • Koenig H., Goldstone A., and Lu C. Y. (1983b) β-Adrenergic stimulation of Ca2+-fluxes, endocytosis, hexose transport, and amino acid transport in mouse kidney is mediated by polyamine synthesis.Proc. Natl. Acad. Sci. 80, 7210–7214.

    PubMed  Google Scholar 

  • Koenig H., Goldstone A., and Lu C. Y. (1983c) Polyamines regulate calcium fluxes in a rapid membrane response.Nature 305, 530–534.

    PubMed  Google Scholar 

  • Koenig H., Goldstone A. D., and Lu C. Y. (1989a). Blood-brain barrier breakdown in cold-injured brain is linked to a biphasic stimulation of ornithine decarboxylase activity and polyamine synthesis: Both are coordinately inhibited by verapamil, dexamethasone, and aspirin.J. Neurochem. 52, 101–109.

    PubMed  Google Scholar 

  • Koenig H., Goldstone A. D., and Lu C. Y. (1989b) Polyamines mediate the reversible opening of the blood-brain barrier by the intracarotid infusion of hyperosmolal manitol.Brain Res. 483, 110–116.

    PubMed  Google Scholar 

  • Koenig H., Goldstone A. D., Lu C. Y., and Trout J. J. (1989c) Polyamines and Ca2+ mediated hypersomolal opening of the blood-brain barrier: In vitro studies in isolated rate cerebral capillaries.J. Neurochem. 52, 1135–1142.

    PubMed  Google Scholar 

  • Koenig H., Goldstone A. D., Lu C. Y., and Trout J. J. (1990) Brain polyamines are controlled byN-methyl-d-aspartate receptors during ischemia and recirculation.Stroke 21(Suppl. III), 98–102.

    Google Scholar 

  • Komulainen H. and Bondy S. C. (1987) Transient elevation of intrasynaptosomal free calcium by putrescien.Brain Res. 401, 50–54.

    PubMed  Google Scholar 

  • Kohsaka S., Heacock A. M., Klinger P. D., Porta R., and Agranoff B. W. (1982) Dissociation of enhanced ornithine decarboxylase activity and optic nerve regeneration in goldfish.Develop. Brain Res. 4, 149–156.

    Google Scholar 

  • Kröner H. (1988) Spermine, another specific allosteric activator of calcium uptake in rat liver mitochondria.Arch. Biochem. Biophys. 267, 205–210.

    PubMed  Google Scholar 

  • Laitinen P. H., Huhtinen R.-L., Hietala O. A., and Pajunen A. E. I. (1985) Ornithine decarboxylase activity in brain regulated by a specific macromolecule, the antizyme.J. Neurochem. 44, 1885–1891.

    PubMed  Google Scholar 

  • Laitinen S. I., Laitinen P. H., Hietala O. A., Pajunen A. E. I., and Piha R. S. (1982) Developmental changes in mouse brain polyamine metabolism.Neurochem. Res. 7, 1477–1485.

    PubMed  Google Scholar 

  • Lapinjoki S. P., Hietala O. A., Pajunen A. E. I., and Piha R. S. (1981) Diurnal levels of polyamines and activities of ornithine andS-adenosyl-l-methionine-decarboxylase in mouse brain.Neurochem. Res. 6, 377–383.

    PubMed  Google Scholar 

  • Lau C., Cameron A., Antolick L., and Slotkin T. A. (1990) Trophic control of the ornithine decarboxylase/polyamine system in neonatal rat brain regions: Lesions caused by 6-hydroxydopamine produce effects selective for cerebellum.Develop. Brain Res. 52, 167–173.

    Google Scholar 

  • Lewis M. E., Lakshmanan J., Nagaiah K., MacDonnell P. C., and Guroff G. (1978) Nerve growth factor increases activity of ornithine decarboxylase in rat brain.Proc. Natl. Acad. Sci. 75, 1021–1023.

    PubMed  Google Scholar 

  • Markwell M. A., Berger S. P. and Paul S. M. (1990) The polyamine synthesis inhibitor α-difluoromethylornithine blocks NMDA-induced neurotoxicity.Europ. J. Pharmacol. 182, 607–609.

    Google Scholar 

  • Martinez D., de Vera N., and Artigas F. (1991) Differential response of rat brain polyamines to convulsant agents.Life Sci. 48, 77–84.

    PubMed  Google Scholar 

  • Matsui I. and Pegg A. E. (1980) Increase in acetylation of spermidine in rat liver extracts brought about by treatment with carbon tetrachloride.Biochem. Biophys. Res. Comm. 92, 1009–1015.

    PubMed  Google Scholar 

  • Metcalf, B. W., Bey P., Danzin C., Jung M. J., Casara P. and, Vevert J. P. (1978) Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C. 4.1.1.17) by substrate and product analogues.Am. J. Chem. Soc. 100, 2551–2553.

    Google Scholar 

  • Müller M., Cleef M., Röhn G., Bonnekoh P., Pajunen A. E. I., Berbstein H.-G., and Paschen W. (1991) Ornithine decarboxylase in reversible cerebral ischemia: An immunohistochemical study.Acta Neuropathol.,83, 39–45.

    PubMed  Google Scholar 

  • Nicchitta C. and Williamson J. R. (1984) Spermine: A regulator of mitochondrial calcium cycling.J. Biol. Chem. 259, 12978–12983.

    PubMed  Google Scholar 

  • Pajunen A. E. I., Hietala O. A., Vibransalo E.-L., and Piha R. S. (1978) Ornithine decarboxylase and adenosylmethionine decarboxylase in mouse brain—effect of electrical stimulation.J. Neurochem. 30, 281–283.

    PubMed  Google Scholar 

  • Pajunen A. E. I., Hietala O. A., Baruch-Virransalo E.-L., and Piha R. S. (1979) The effect of DL-allylglycine on polyamine and GABA metabolism in mouse brain.J. Neurochem. 32, 1401–1408.

    PubMed  Google Scholar 

  • Parker K. and Vernadakis A. (1980) Stimulation of ornithine decarboxylase activity in neuronal cell culture: Potential role of insulin.J. Neurochem. 35, 155–163.

    PubMed  Google Scholar 

  • Paschen W., Hallmayer J., and Mies G. (1987a) Regional profiles of polyamines in reversible cerebral ischemia of Mongolian gerbils.Neurochem. Pathol. 7, 143–156.

    PubMed  Google Scholar 

  • Paschen W., Schmidt-Kastner R., Djuricic B., Meese C., Linn F., and Hossmann K.-A. (1987b) Polyamine changes in reversible cerebral ischemia.J. Neurochem. 49, 35–37.

    PubMed  Google Scholar 

  • Paschen W., Hallmayer J., and Röhn G. (1988a) Regional changes of polyamine profiles after reversible cerebral ischemia in Mongolian gerbils: Effects of nimodipine and barbiturate.Neurochem. Pathol. 8, 27–41.

    Google Scholar 

  • Paschen W., Hallmayer J., and Röhn G. (1988b) Relationship between putrescine content and density of ischemic cell damage in the brain of mongolian gerbils: Effect of nimodipine and barbiturate.Acta Neurpathol. 76, 388–394.

    Google Scholar 

  • Paschen W., Röhn G., Hallmayer J., and Mies G. (1988c) Polyamine metabolism in reversible cerebral ischemia of Mongolian gerbils.Metabol. Brain Dis. 3, 297–302.

    Google Scholar 

  • Paschen W., Röhn G., Meese C. O., Djuricic G., and Schmidt-Kastner R. (1988d) Polyamine metabolism in reversible cerebral ischemia: Effect of α-difluoromethylornithine.Brain Res. 453, 9–16.

    PubMed  Google Scholar 

  • Paschen W., Schmidt-Kastner R., Hallmayer J., and Djuricic B. (1988e) Polyamines in cerebral ischemia.Neurochem. Pathol. 9, 1–20.

    PubMed  Google Scholar 

  • Paschen W., Hallmayer J., Mies G., and Röhn G. (1990a) Ornithine decarboxylase activity and putrescine levels in reversible cerebral ischemia of Mongolian gerbils: Effect of barbiturate.J. Cereb. Blood Flow Metabol. 10, 236–242.

    Google Scholar 

  • Paschen W., Kocher M., and Hossmann K.-A. (1990b) Relationship between changes in putrescine and energy metabolites during early recirculation following ischemia of rat brain.Circ. Metabol. Cerveau 7, 29–40.

    Google Scholar 

  • Paschen W., Bengtsson F., Röhn G., Bonnekoh P., Siesjö B. K., and Hossmann K.-A. (1991a) Cerebral polyamine metabolism in reversible hypoglycemia of rat: Relationship to energy metabolites and calcium.J. Neurochem. 57, 204–215.

    PubMed  Google Scholar 

  • Paschen W., Csiba L., Röhn G., and Bereczki D. (1991b) Disturbances in polyamine metabolism in reversible focal cerebral ischemia of rat.J. Cereb. Blood Flow Metabol. 11 (Suppl. 2), 59.

    Google Scholar 

  • Paschen W., Xie Y., Röhn G., Hallmayer J., and Hossmann K.-A. (1991c) Protein and polyamine metabolism in reversible cerebral ischemia of gerbils, inAdvances in Brain Resuscitation (Takeshita H., Siesjö B. K., and Miller J. D. eds.), pp. 99–114, Springer-Verlag Tokyo, Berlin, Heidelberg.

    Google Scholar 

  • Paschen W., Csiba L., Roehn G., and Bereczki D. (1991d) Polyamine metabolism in transient focal cerebral ischemia of rat brain.Brain Res., in press.

  • Pegg A. E. (1986) Recent advances in the biochemistry of polyamines in eukaryotes.Biochem. J. 234, 249–262.

    PubMed  Google Scholar 

  • Pegg A. E. and McCann P. P. (1982) Polyamine metabolism and function.Am. J. Physiol. 243, C212-C221.

    PubMed  Google Scholar 

  • Pegg A. E., Seely J. E., Pösö H., Della Ragione F., and Zagon I. S. (1982) Polyamine synthesis and interconversion in rodent tissue.Fed. Proc. 41, 3065–3072.

    PubMed  Google Scholar 

  • Persson L. and Pegg A. E. (1984) Studies of the induction of spermidine/spermine N1-acetyltransferase using specific antiserum.J. Biol. Chem. 259, 12364–12367.

    PubMed  Google Scholar 

  • Ransom R. W. and Stec N. L. (1988) Cooperative modulation of [3H]MK-801 binding to theN-methyl-d-aspartate receptor-ion complex byl-glutamate, glycine and polamines.J. Neurochem. 51, 830–836.

    PubMed  Google Scholar 

  • Reed L. J. and de Belleroche J. (1989) Excitotoxines induce ornithine decarboxylase activity in the rat central nervous system.Biochem. Soc. Trans. 17, 715–716.

    Google Scholar 

  • Reed L. J. and de Belleroche J. (1990) Induction of ornithine decarboxylase in cerebral cortex by excitotoxin lesion of nucleus basalis: Association with postsynaptic responsiveness andN-methyl-d-aspartate receptor activation.J. Neurochem. 55, 780–787.

    PubMed  Google Scholar 

  • Reynolds I. J. and Miller R. J. (1989) Ifenprodil is a novel type ofN-methyl-d-aspartate receptor antagonist: Interaction with polyamines.Mol. Pharmacol. 36, 758–765.

    PubMed  Google Scholar 

  • Rodichok L. D. and Friedman A. H. (1978) Diurnal variations in the toxicity and tissue levels of spermidine in mice.Life Sci. 23, 2137–2146.

    PubMed  Google Scholar 

  • Röhn G., Kocher M., Oschlies U., Hossmann K.-A., and Paschen W. (1990) Putrescine content and structural defects in isolated fractions of rat brain after reversible cerebral ischemia.Exp. Neurol. 107, 249–255.

    PubMed  Google Scholar 

  • Röhn G., Schlenker M., and Paschen W. (1991) Activity of ornithine decarboxylase (ODC) andS-adenosylmethionine decarboxylase (SAMDC) in reversible cerebral ischemia of Mongolian gerbils.J. Cereb. Blood Flow Metabol.,11 (Suppl. 2), 5509.

    Google Scholar 

  • Rosenberg-Hasson Y., Bercovich Z., Ciechanover A., and Kahana C. (1989) Degradation of ornithine decarboxylase in mammalian cells is ATP dependent but ubiquitin independent.Eur. J. Biochem. 185, 469–474.

    PubMed  Google Scholar 

  • Rottenberg H. and Marbach M. (1990) Regulation of Ca2+ transport in brain mitochondria. I. The mechanism of spermine enhancement of Ca2+ uptake and retention.Biochim. Biophys. Acta 1016, 77–86.

    PubMed  Google Scholar 

  • Russell D. H., Gfeller E., Marton L. J., and LeGendre S. M. (1974) Distribution of putrescine, spermidine, and spermine in rhesus monkey brain: Decrease in spermidine and spermine concentrations in motor cortex after electrical stimulation.J. Neurobiol. 5, 349–354.

    PubMed  Google Scholar 

  • Russell D. H. and Snyder S. H. (1969) Amine synthesis in regenerating rat liver: Extremely rapid turnover of ornithine decarboxylase.Mol. Pharmacol. 5, 253–262.

    PubMed  Google Scholar 

  • Sacaan A. I. and Johnson K. M. (1989) Spermine enhances binding to the glycine site associated with theN-methyl-d-aspartate receptor complex.Mol. Pharmacol. 36, 836–839.

    PubMed  Google Scholar 

  • Sacaan A. I. and Johnson K. M. (1990) Characterization of the stimulatory and inhibitory effects of polyamines on [3H]N-(1-[thienyl]cyclohexyl)piperidine binding to theN-methyl-d-aspartate receptor ionophore complex.Mol. Pharmacol. 37, 572–577.

    PubMed  Google Scholar 

  • Schmidt-Kastner R., Szymas J., and Hossmann K.-A. (1990) Immunohistochemical study of glial reaction and serumprotein extravazation in relation to neuronal damage in rat hippocampus after ischemia.Neuroscience 38, 527–540.

    PubMed  Google Scholar 

  • Schoemaker H., Allen J., and Langer S. Z. (1990) Binding of [3H]ifenprodil, a novel NMDA antagonist, to a polyamine-sensitive site in the rat cerebral cortex.Eur. J. Pharmacol. 176, 249, 250.

    PubMed  Google Scholar 

  • Sears E. S., McCandless D. W., and Chandler M. D. (1985) Disruption of the blood-brain barrier in hyperammonemic coma and the pharmacologic effects of dexamethasone and difluoromethyl ornithine.J. Neurosci. Res. 14, 255–261.

    PubMed  Google Scholar 

  • Seiler N. (1981) Polyamine metabolism in the brain.Neurochem. Int. 3, 95–110.

    Google Scholar 

  • Seiler N. and Shaw G. C. (1981) Polyamine metabolism and function in brain.Neurochem. Intern. 3, 95–110.

    Google Scholar 

  • Shaskan E. G., Haraszti J. H., and Snyder S. H. (1973) Polyamines: Developmental alterations in regional disposition and metabolism in rat brain.J. Neurochem. 20, 1443–1452.

    PubMed  Google Scholar 

  • Shaw G. G. and Pateman A. J. (1973) The regional distribution of polyamines spermidine and spermine in brain.J. Neurochem. 20, 1225–1230.

    PubMed  Google Scholar 

  • Singh L., Oles R., and Woodruff G. (1990) In vivo interaction of a polyamine with the NMDA receptor.Eur. J. Pharmacol. 180, 391–392.

    PubMed  Google Scholar 

  • Slotkin T. A., Barnes G., Lauf C., Seidler F. J., Trepanier P., Weigel S. J., and Whitmore W. L. (1982) Development of polyamine and biogenic amine systems in brains and hearts of neonatal rats given dexamethasone: Role of biochemical alterations in cellular maturation for producing deficits in ontogeny of neurotransmitter levels, uptake, storage and turnover.J. Pharmacol. Exp. Therap. 221, 686–693.

    Google Scholar 

  • Slotkin T. A., Persons D., Slepetis R. J., Taylor D., and Bartolome J. (1984a) Control of nucleic acid and protein synthesis in developing brain, kidney, and heart of the neonatal rat: Effects of α-difluoromethylornithine, a specific, irreversible inhibitor of ornithine decarboxylase.Theratol. 30, 211–224.

    Google Scholar 

  • Slotkin T. A., Bartolome J., Persons D., and Whitmore W. (1984b) Polyamines in brain and heart of the neonatal rat: Effects of inhibitors of ornithine decarboxylase and spermidine synthase.Life Sci. 35, 1125–1131.

    PubMed  Google Scholar 

  • Slotkin T. A. and Bartolome J. (1986) Role of ornithine decarboxylase and the polyamines in nervous system development: A review.Brain Res. Bull. 17, 307–320.

    PubMed  Google Scholar 

  • Soliman K. F. A., Udoye M. O., Iramain C. A., and Walker, C. A. (1982) Diurnal variations in ornithine decarboxylase activity of different brain regions of the rat.Neurosci. Lett. 33, 285–288.

    PubMed  Google Scholar 

  • Sprosen T. M. and Woodruff G. N. (1990) Polyamines potentiate NMDA induced whole-cell currents in cultured striatal neurons.Eur. J. Pharmacol. 179, 477, 478.

    Google Scholar 

  • Suzuki R., Yamaguchi T., Kirino T., Orzi F., and Klatzo I. (1983) The effect of 5-minutes ischemia in Mongolian gerbils: I. Blood-brain barrier, cerebral blood flow, and local glucose utilization changes.Acta Neuropathol. 60, 207–216.

    PubMed  Google Scholar 

  • Tetzlaff W. and Kreuzberg G. W. (1985) Ornithine decarboxylase in motorneurons during regeneration.Exp. Neurol. 89, 679–688.

    PubMed  Google Scholar 

  • Thilmann R., Xie Y., Kleihues P., and Kiessling M. (1986) Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus.Acta Neuropathol. 71, 88–93.

    PubMed  Google Scholar 

  • Tilson H. A., Emerich D., and Bondy S. C. (1986) Inhibition of ornithine decarboxylase alters neurological responsiveness to a tremorigen.Brain Res. 379, 147–150.

    PubMed  Google Scholar 

  • Trout J. J., Koenig H., Goldstone A. D., and Lu C. Y. (1986) Blood-brain barrier breakdown by cold injury: Polyamine signals mediate acute stimulation of endocytosis, vesicular transport, and microvillus formation in rat cerebral capillaries.Lab. Invest. 55, 622–631.

    PubMed  Google Scholar 

  • Ucker D. S. (1987) Cytotoxic T lymphocytes and glucocorticoids activate an endogenous suicide process in target cells.Nature 327, 62–64.

    PubMed  Google Scholar 

  • Waldrop R. D., Saydjari R., Arnold J. R., Ford P., Rubin N. H., Poston G. J., Lawrence J., Rayford P. L., Townsend C. M., and Thomson J. C. (1989) Twenty-four-hour variations in ornithine decarboxylase and acid phosphatase in mice.

  • Walsh T. J., Emerich D. F. and Bondy S. D. (1989) Destruction of specific hippocampal cell fields increase ornithine decarboxylase activity: Modulation of the biochemical but not the histological changes by ganglioside GM1.Exp. Neurol. 105, 54–61.

    PubMed  Google Scholar 

  • Wells M. R. (1986) Autoradiographic measurement of relative changes in ornithine decarboxylase in axotomized superior cervical ganglion neurons.Exp. Neurol. 92, 445–450.

    PubMed  Google Scholar 

  • Williams K., Romano C., and Molinoff P. B. (1989) Effects of polyamines on the binding of [3H]MK-801 to theN-methyl-d-aspartate receptor: Pharmacological evidence for the existence of a polyamine recognition site.Mol. Pharmacol. 36, 575–581.

    PubMed  Google Scholar 

  • Williams K., Romano C., Dichter M. A., and Molinoff P. B. (1991) Modulation of the NMDA receptor by polyamines.Life Sci. 48, 469–498.

    PubMed  Google Scholar 

  • Williams-Ashman H. G. and Canellakis Z. N. (1979) Polyamines in mammalian biology and cancer.Perspect. Biol. Med. 22, 421–438.

    PubMed  Google Scholar 

  • Wong B. J. F. and Mattox D. E. (1991) The effects of polyamines and polyamine inhibitors on rat sciatic and facial nerve regeneration.Exp. Neurol. 111, 263–266.

    PubMed  Google Scholar 

  • Yang J. W., Raizada M. K., and Fellows R. E. (1981) Effects of insulin on cultured rat brain cells: Stimulation of ornithine decarboxylase.J. Neurochem. 36, 1050–1057.

    PubMed  Google Scholar 

  • Zawia N. H. and Bondy S. C. (1990) Electrically stimulated rapid gene expression in the brain: Ornithine decarboxylase and c-fos.Mol. Brain Res. 7, 243–247.

    PubMed  Google Scholar 

  • Zawia N. H., Vendrell M., and Bondy S. C. (1990) Potentiation of stimulated cerebral c-fos and ornithine decarboxylase gene expression by trifluoperazine.Europ. J. Pharmacol. 183, 1544–1545.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paschen, W. Polyamine metabolism in different pathological states of the brain. Molecular and Chemical Neuropathology 16, 241–271 (1992). https://doi.org/10.1007/BF03159973

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159973

Index Entries

Navigation