Skip to main content
Log in

Control system design based on holistic eigenvalue allocation

Regelsystementwurf auf der Basis holistischer Eigenwertvorgabe

  • Revlewed Original Papers
  • Published:
e&i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2001

Abstract

A trade-off between optimum allocation of the entire set of eigenvalues and the size of controller norm or a general actuator effort is carried out for continuous-time and discrete-time systems. Controllers achieving appropriate results are termed holistic. The design is based on the trace and determinant of the closed-loop state-space matrix. To solve the problem within the scope of actuating effort, the norm of the state controller matrixor the actuator effort transfer matrix are taken into consideration. The method is also extended for designing holistic observers. For preserving stability, a Lyapunov condition is included.

Zusammenfassung

Die Vorgabe der Eigenwerte einer linearen Mehrgrößenregelung wird in ihrer Gesamtheit besorgt. Regler, die diese Vorgabe erfüllen, werden als holistisch bezeichnet. Der Entwurf benutzt nur die Spur der inversen Koeffizientenmatrix der geschlossenen Regelung bzw. die Determinante der Koeffizientenmatrix direkt bei kontinuierlichen bzw. zeitdiskreten Systemen. Obwohl diese Methode von einer nur notwendigen Stabilitätsbedingung ausgeht, ist sie auch auf instabile Regelstrecken anwendbar. Als Rahmen für die holistische Eigenwertvorgabe ist nur ein Richtwert des Steueraufwands erforderlich, mit dem sie optimal in Abstimmung gebracht wird. Die Methode ist auch auf holistische Beobachter ausgedehnt und um eine Lyapunov-Bedingung für Stabilität erweitert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann, J.: Abtastregelung, Band II, Entwurf robuster Systeme. Heidelberg: Springer. 1983.

    Google Scholar 

  2. Alexandridis, A. T., Galanos, G. D.: Optimal pole placement for linear multi-input multi-output controllable systems, IEEE Trans. CAS-34, 1987, pp. 1602–1604.

    Article  MATH  Google Scholar 

  3. Amin, M. H.: Optimal pole shifting for continuous multivariable linear systems, International J. Control 41 (1985), pp. 701–707.

    Article  MATH  MathSciNet  Google Scholar 

  4. Anderson, B. D. O., Moore, J. B.: Optimal Control. London: Prentice-Hall. 1989.

    Google Scholar 

  5. Brewer, J. W.: Kronecker products and matrix calculus in system theory. IEEE-Trans., CAS-25, 1978, pp. 772–781.

    MATH  MathSciNet  Google Scholar 

  6. Bühler, H.: Minimierung der Norm des Rückführvektors bei der Polvorgabe. Automatisierungstechnik 34 (1986), pp. 152–155.

    MATH  Google Scholar 

  7. Cameron, R. G.: New pole assignment algorithm with reduced norm feedback matrix. IEEE Proceedings, Part D: Control Theory and Applications, 135, 1988, pp. 111–118.

    MATH  Google Scholar 

  8. Furuta, K., Kim, S. B.: Pole assignment in a specified disk. IEEE Trans. AC-32, 1987, pp. 423–427.

    MATH  Google Scholar 

  9. Kawasaki, N., Shimemura, E.: Determining quadratic weighting matrices to locate poles in a specified region. Automatica 19, (1983), pp. 557–560.

    Article  MATH  MathSciNet  Google Scholar 

  10. Keerthi, S. S., Phatak, M. S.: Regional pole placement of multivariable systems under control structure constraints. IEEE Trans. AC-40, 1995, pp. 272–276.

    MATH  MathSciNet  Google Scholar 

  11. Moheimani, S. O. R., Petersen, I. R.: Quadratic guaranteed cost with robust pole placement in a disk. Proceeding IEE, Control Theory Appl. 143, 1996, pp. 37–43.

    Article  MATH  Google Scholar 

  12. Natke, H. G., Cempel, C.: Holistic dynamics and subsystem modelling: Principles. Int. J. of Systems Sci. 30 (1999), pp. 283–293.

    Article  MATH  Google Scholar 

  13. Piazzi, A.: Pole placement under structural constraints. IEEE-Trans., AC-35, 1990, pp. 759–761.

    MATH  MathSciNet  Google Scholar 

  14. Piguet, Y., Holmberg, U., Longchamp, R.: Multi-model weighted pole placement design. European Journal of Control 3 (1997), pp. 216–226.

    MATH  Google Scholar 

  15. Sugimoto, K.: Partial pole placement by LQ regulators: an inverse problem approach. IEEE Trans. AC-43, 1998, pp. 706–708.

    MATH  MathSciNet  Google Scholar 

  16. Szekely, J.: A holistic approach to materials planning research and development. Metallurgical Processes for the Early Twenty-First Century, Technology and Practice. San Diego, II, 1994, pp. 3–19.

  17. Weinmann, A.: Uncertain models and robust control. New York, Vienna: Springer. 1991.

    Google Scholar 

  18. Weinmann, A.: Optimum system matrix assignment subject to limited controller effort. IEEE Conference on Decision and Control, Phoenix, WeA04. 1999, pp. 1421–1426.

  19. Wittenmark, B., Evans, R. J., Soh, Y. C.: Constrained pole placement using transformation and LQ design. Automatica 23, (1987), pp. 767–769.

    Article  MATH  Google Scholar 

  20. Zhou, K., Doyle, J. C., Glover, K.: Robust and optimal control. Upper Saddle River: Prentice-Hall. 1996.

    MATH  Google Scholar 

  21. Weinmann, A.: Matrix assignment subject to Lyapunov and closed-loop norm conditions. 2001 American Control Conference, Arlington, Virginia, MP 12-5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Weinmann ÖVE.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03158919.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinmann, A. Control system design based on holistic eigenvalue allocation. Elektrotech. Inftech. 118, 167–173 (2001). https://doi.org/10.1007/BF03159524

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159524

Keywords

Schlüsselwörter

Navigation