Skip to main content
Log in

Fatty Acyl-CoA dehydrogenase deficiency: Enzyme measurement and studies on alternative metabolism

  • Dicarboxylic Acidurias And Acyl-Coa Dehydrogenase Deficiencies
  • Published:
Journal of Inherited Metabolic Disease

Abstact

Fatty acyl-CoA dehydrogenase deficiencies are defined as disorders of the metabolism of straight chain acyl-CoA esters at the level of short chain acyl-CoA, general (medium chain) acyl-CoA and long chain acyl-CoA dehydrogenases. Patients with proven or indicated defects in either general (medium chain) or long chain acyl-CoA dehydrogenase have been reported.

In recent years assays for the enzymatic diagnosis in cells, especially cultured skin fibroblasts, from such patients have been developed. The different methods are reviewed. The urinary excretion profile of organic acids from patients with fatty acyl-CoA dehydrogenase deficiencies are characterized by the presence of different compounds originating from the primary accumulated acyl-CoA ester(s). The most important biochemical processes involved in the formation of these compounds are glycine conjugation and ω/ω-1 oxidation. The biochemistry of these pathways is discussed and the knowledge gained fromin vitro andin vivo studies is used to explain the excretion pattern in some of the patients with general (medium chain) acyl-CoA dehydrogenase deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amendt, B. A., Fritchman, K. N. and Rhead, W. J. Dicarboxylic aciduria due to deficiency of the long-chain acyl-CoA dehydrogenase reversible by addition of flavin adenine dinucleotide.Pediatr. Res. 17 (1983) 206A

    Google Scholar 

  • Beinert, H. Acyl-coenzyme A dehydrogenases. In Boyer, P. D., Lardy, H. and Myrback, K. (eds.)The Enzymes, 2nd edn., Academic Press, New York, 1963, pp. 447–466

    Google Scholar 

  • Besrat, A., Polan, C. E. and Henderson, L. M. Mammalian metabolism of glutaric acid.J. Biol. Chem. 244 (1969) 1461–1469

    PubMed  CAS  Google Scholar 

  • Bronfman, M., Inestrosa, N. C. and Leighton, F. Fatty acid oxidation by human liver peroxisomes.Biochem. Biophys. Res. Commun. 88 (1979) 1030–1036

    Article  PubMed  CAS  Google Scholar 

  • Coates, P. M., Stanley, C. A., Hale, D. E., Corkey, B. E., Hall, C. L. and Cortner, J. A. Fatty acid oxidation in fibroblasts of patients with medium-chain acyl-CoA dehydrogenase deficiency.Am. J. Hum. Genet. 34 (1982) 48A

  • Coates, P. M., Hale, D. E., Katz, M. R., Stanley, C. A. and Hall, C. L. Detection of medium-chain acyl-CoA dehydrogenase deficiency in leucocytes.Pediatr. Res. 17 (1983) 288A

    Google Scholar 

  • Colle, E., Mamer, O. A. and Montgomery, J. Episodic hypoglycemia with organic aciduria.Pediatr. Res. 14 (1980) 570

    Google Scholar 

  • Colle, E., Mamer, O. A., Montgomery, J. A. and Miller, J. D. Episodic hypoglycemia with psi-hydroxy fatty acid excretion.Pediatr. Res. 17 (1983) 171–176

    Article  PubMed  CAS  Google Scholar 

  • Divry, P., David, M., Gregersen, N., Kolvraa, S., Christensen, E., Collet, J. P., Dellamonica, C. and Cotte, J. Dicarboxylic aciduria due to medium-chain acyl-CoA dehydrogenase defect: A cause of hypoglycemia in childhood.Acta Paediatr. Scand. 72 (1983) 943–949

    Article  PubMed  CAS  Google Scholar 

  • Furuta, S., Miyazawa, S. and Hashimoto, T. Purification and properties of rat liver acyl-CoA dehydrogenases and electron transfer flavoprotein.J. Biochem. 90 (1981) 1739–1750

    PubMed  CAS  Google Scholar 

  • Gregersen, N., Lauritzen, R. and Rasmussen, K. Suberyl-glycine excretion in the urine from a patient with dicarboxylic aciduria.Clin. Chim. Acta 70 (1976) 417–425

    Article  PubMed  CAS  Google Scholar 

  • Gregersen, N., Rosleff, F., Kolvraa, S., Hobolth, N., Rasmussen, K. and Lauritzen, R. Non-ketotic C6-C10-dicarboxylic aciduria: Biochemical investigations of two cases.Clin. Chim. Acta 102 (1980) 179–189

    Article  PubMed  CAS  Google Scholar 

  • Gregersen, N., Kolvraa, S. and Mortensen, P. B. On the origin of C6-C10-dicarboxylic and C6-C10-ω-l-hydroxy mono-carboxylic acids in human and rat with acyl-CoA dehydrogenation deficiencies:In vitro studies on the ω- and ω-1-oxidation of medium-chain (C6-C12) fatty acids in human and rat liver.Pediatr. Res. 17 (1983a) 828–834

    Article  PubMed  CAS  Google Scholar 

  • Gregersen, N., Kølvraa, S., Rasmussen, K., Mortensen, P. B., Divry, P., David, M. and Hobolth, N. General (medium-chain) acyl-CoA dehydrogenase deficiency (non-ketotic dicarboxylic aciduria): Quantitative urinary excretion pattern of 23 biological significant organic acids in 3 cases.Clin. Chim. Acta 132 (1983b) 181–191

    Article  PubMed  CAS  Google Scholar 

  • Hale, D. E., Coates, P. M., Stanley, C. A., Cortner, J. A. and Hall, C. L. Long-chain acyl-CoA dehydrogenase deficiency.Pediatr. Res. 17 (1983) 290A

    Google Scholar 

  • Hall, C. L. Acyl-CoA dehydrogenases from pig liver mitochondria.Meth. Enzymol. 71 (1981) 375–385

    Article  PubMed  CAS  Google Scholar 

  • Hall, C. L. and Kamin, H. The purification and some properties of electron transfer flavoprotein and general fatty acyl coenzyme A dehydrogenase from pig liver mitochondria.J. Biol. Chem. 250 (1975) 3476–3486

    PubMed  CAS  Google Scholar 

  • Ikeda, Y., Dabrowski, C. and Tanaka, K. Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria: Identification of a new 2-methyl branched chain acyl-CoA dehydrogenase.J. Biol. Chem. 258 (1983) 1066–1076

    PubMed  CAS  Google Scholar 

  • Ikeda, Y. and Tanaka, K. Purification and characterization of isovaleryl coenzyme A dehydrogenase from rat liver mitochondria.J. Biol. Chem. 258 (1983) 1077–1085

    PubMed  CAS  Google Scholar 

  • Kamerling, J. P., Duran, M., Bruinvis, L., Ketting, D., Wadman, S. K. and Vliegenthart, J. F. G. The absolute configuration of urinary 5-hydroxyhexanoic acid — a product of fatty acid ω-1 oxidation — in patients with nonketotic dicarboxylic aciduria.Clin. Chim. Acta 125 (1982) 247–254

    Article  PubMed  CAS  Google Scholar 

  • Kindl, H. and Lazarow, P. B. (eds.) Peroxisomes and glyoxysomes. InAnn. NY Acad. Sci. 386 (1982)

  • Kølvraa, S. and Gregersen, N. Methods for the measurement of fatty acid β-oxidation and acyl-CoA dehydrogenase in cultured fibroblasts.J. Inher. Metab. Dis. 5, Suppl. 1 (1982) 31–32

    Article  Google Scholar 

  • Kølvraa, S., Gregersen, N., Christensen, E. and Hobolth, N.In vitro fibroblast studies in a patient with C6-C10-dicarboxylic aciduria: Evidence for a defect in general acyl-CoA dehydrogenase.Clin. Chim. Acta 126 (1982) 53–67

    Article  PubMed  Google Scholar 

  • Lazarow, P. B. Rat liver peroxisomes catalyze the β-oxidation of fatty acids.J. Biol. Chem. 253 (1978) 1522–1528

    PubMed  CAS  Google Scholar 

  • Mamer, O. A., Montgomery, J. A. and Colle, E. Profiles in altered metabolism III: Ω-hydroxyacid excretion in a case of episodic hypoglycemia.Biochem. Mass Spectrom. 7 (1980) 53–57

    Article  CAS  Google Scholar 

  • Mortensen, P. B. and Gregersen, N. The biological origin of ketotic dicarboxylic aciduria:In vivo andin vitro investigations of the co oxidation of C6-C16-monocar-boxylic acids in unstarved, starved and diabetic rats.Biochim. Biophys. Acta 666 (1981) 394–404

    PubMed  CAS  Google Scholar 

  • Mortensen, P. B. and Gregersen, N. The biological origin of ketotic dicarboxylic aciduria: II.In vivo andin vitro investigations of the P-oxidation of C8-C16-dicarboxylic acids in unstarved, starved and diabetic rats.Biochim. Biophys. Acta 710 (1982) 477–484

    PubMed  CAS  Google Scholar 

  • Mortensen, P. B., Kølvraa, S., Gregersen, N. and Rasmussen, K. Cyanide-insensitive and clofibrate enhanced β-oxidation of dodecanedioic acid in rat liver: An indication of peroxisomal β-oxidation ofn-dicarboxylic acids.Biochim. Biophys. Acta 713 (1982) 393–397

    PubMed  CAS  Google Scholar 

  • Mortensen, P. B., Gregersen, N., Rasmussen, K. and Kølvraa, S. The β-oxidation of dicarboxylic acids in isolated mitochondria and peroxisomes.J. Inher. Metab. Dis. 6 Suppl. 2 (1983) 123–124

    Article  Google Scholar 

  • Naylor, E. W., Mosovich, L. L., Guthrie, R., Evans, J. E. and Tieckelmann, H. Intermittent non-ketotic dicarboxylic aciduria in two siblings with hypoglycemia: An apparent defect in P-oxidation of fatty acids.J. Inher. Metab. Dis. 3 (1980) 19–24

    Article  PubMed  CAS  Google Scholar 

  • Rhead, W., Mantagos, S. and Tanaka, K. Glutaric aciduria type II:In vitro studies on substrate oxidation, acyl-CoA dehydrogenases, and electron-transferring flavoprotein in cultured skin fibroblasts.Pediatr. Res. 14 (1980) 1339–1342

    Article  PubMed  CAS  Google Scholar 

  • Rhead, W. and Tanaka, K. Demonstration of a specific mitochondrial isovaleryl-CoA dehydrogenase deficiency in fibroblasts from patients with isovaleric acidemia.Proc. Natl. Acad. Sci. USA 77 (1980) 580–583

    Article  PubMed  CAS  Google Scholar 

  • Rhead, W., Hall, C. L. and Tanaka, K. Novel tritium release assays for isovaleryl-CoA and butyryl-CoA dehydrogenases.J. Biol. Chem. 256 (1981) 1616–1624

    PubMed  CAS  Google Scholar 

  • Rhead, W. J., Amendt, B. A., Fritchman, K. S. and Felts, J. Dicarboxylic aciduria: Deficient l-14C-octanoate oxidation and medium-chain acyl-CoA dehydrogenase activity in fibroblasts.Science 221 (1983) 73–75

    Article  PubMed  CAS  Google Scholar 

  • Ruzicka, F. J. and Beinert, H. A new iron-sulfur flavoprotein of the respiratory chain.J. Biol. Chem. 252 (1977) 8440–8445

    PubMed  CAS  Google Scholar 

  • Stanley, C. A., Gonzales, E., Yang, W., Kelley, R. I. and Baker, L. Hypoketotic hypoglycemia — Evidence for a new defect in fatty acid oxidation.Pediatr. Res. 16 (1982) 264A

    Google Scholar 

  • Truscott, R. J. W., Hick, L., Pullin, C., Halpern, B., Wilcken, B., Griffiths, H., Silink, M., Kilham, H. and Grunseit, F. Dicarboxylic aciduria: The response to fasting.Clin. Chim. Acta 94 (1979) 31–39

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., Roth, K. S. and Coates, P. M. Hypoglycemic, hypoketotic dicarboxylic aciduria — A possible defect in fatty acid oxidation.Pediatr. Res. 16 (1982) 267A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregersen, N. Fatty Acyl-CoA dehydrogenase deficiency: Enzyme measurement and studies on alternative metabolism. J. Inher. Metab. Dis. 7 (Suppl 1), 28–32 (1984). https://doi.org/10.1007/BF03047370

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03047370

Keywords

Navigation