Skip to main content
Log in

Die 8p11-myeloproliferative Erkrankung

The 8p11 myeloproliferative syndrome

  • Published:
Medizinische Klinik Aims and scope Submit manuscript

Zusammenfassung

□ Klinik

Die 8p11-myeloproliferative Erkrankung ist durch eine der chronischen myeloischen Leukämie ähnliche myeloische Hyperplasie, deutliche Eosinophilie sowie ein mit hoher Inzidenz auftretendes Non-Hodgkin-Lymphom, meist vom T-lymphoblastischen Subtyp, gekennzeichnet. Nach einer kurzen chronischen Phase von durchschnittlich sechs bis neun Monaten kommt es zu einem raschen Übergang in eine akute myeloische Leukämie. Die mediane Überlebenszeit beträgt weniger als zwölf Monate.

□ Zytogenetik

In den leukämischen Zellen des peripheren Blutes/Knochenmarks und in den Zellen der Lymphknoten kann eine erworbene, klonale Abnormalität der Chromosomenbande 8p11 mit den Translokationen t(8;13) (p11;q12), t(8;9)(p11;q34) und t(6;8)(q27;p11) nachgewiesen werden.

□ Molekularbiologie

Die molekulargenetische Charakterisierung dieser Translokationen zeigt die Fusion von drei nicht miteinander verwandten Genen (ZNF198 auf 13p12, FAN auf 9q34 und FOP auf 6q27) mit dem auf 8p11 lokalisierten Gen „fibroblast growth factor receptor-1” (FGFR1). Die Tyrosinkinasedomäne von FGFR1 ist in jedem Fusionsgen komplett erhalten und vermutlich durch Dimerisierungsdomänen der unterschiedlichen Fusionspartner in identischer Weise aktiviert.

□ Schlußfolgerung

Aktivierte Tyrosinkinasen-Signaltransduktionskaskaden erlangen zunehmende Bedeutung in der Pathogenese chronischer myeloproliferativer Erkrankungen und myelodysplastischer Syndrome. Die Entwicklung von Tyrosinkinaseinhibitoren könnte daher einen, vielversprechenden therapeutischen Ansatz darstellen.

Abstract

□ Clinical Manifestations

The 8p11 myeloproliferative syndrome is characterized by a chronic myelogenous leukemia-like myeloid hyperplasia, marked eosinophilia and a strikingly high incidence of non-Hodgkin’s lymphoma, mostly of the T-lymphoblastic subtype. After a short chronic phase of 6 to 9 months it rapidly transforms into an acute myelogenous leukemia. The median survival time is less than 12 months.

□ Cytogenetics

The leukemic cells of peripheral blood/bone marrow and the lymphoma cells have the same acquired, clonal abnormality of chromosome band 8p11 with the translocations t(8;13)(p11;q12), t(8;9)(p11;q34), and t(6;8)(q27;p11).

□ Molecular Genetics

The molecular cloning of these translocations has shown the fusion of three unrelated genes (ZNF198 at 13p12, FAN at 9q34 and FOP at 6q27) to the fibroblast growth factor receptor-1 (FGFR1) gene at 8p11. The complete coding sequence of the tyrosine kinase domain of FGFR1 is retained in all three fusion genes and presumably activated by sequences of the different fusion partners by dimerization.

□ Conclusion

Activation of tyrosine kinase signal transduction pathways are of increasing interest in the pathogenesis of chronic myeloproliferative disorders and myelodysplastic syndromes. The development of tyrosine kinase inhibitors could represent a promising therapeutic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Abruzzo LV, Jaffe ES, Cotelingam JD, Whang-Peng J, Del-Duca V, Medeiros LJ. T-cell lymphoblastic lymphoma with eosinophilia associated with subsequent myeloid malignancy. Am J Surg Pathol 1992;16:236–45.

    Article  PubMed  CAS  Google Scholar 

  2. Andreasson P, Johannson B, Carlsson M, et al. BCR/ABL-negative chronic myeloid leukemia with ETV6/ABL fusion. Genes Chromosom Cancer 1997; 20:299–304.

    Article  PubMed  CAS  Google Scholar 

  3. Avraham H, Banu N, Scadden DT, Abraham J, Groopman JE. Modulation of megakaryocytopoiesis by human basic fibroblast growth factor. Blood 1994;83:2126–32.

    PubMed  CAS  Google Scholar 

  4. Behringer D, Schaefer HE, Kunzmann R, Mertelsmann R, Dölken G. Translocation t(8;13) in a patient with T cell lymphoma and features of a myeloproliferative syndrome. Leukemia 1995;9:988–2.

    PubMed  CAS  Google Scholar 

  5. Carlo-Stella C, Dotti G, Mangoni L, et al. Selection of myeloid progenitors lacking BCR/ABL mRNA in chronic myelogenous leukemia patients after in vitro treatment with the tyrosine kinase inhibitor genistein. Blood 1996;88:3091–100.

    PubMed  CAS  Google Scholar 

  6. Carroll M, Ohno-Jones S, Tamura S, et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 1997;90:4947–52.

    PubMed  CAS  Google Scholar 

  7. Carroll M, Tomasson MH, Barker GF, Golub TR, Gilliland DG. The TEL/platelet-derived growth factor beta receptor (PDGF beta R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF beta R kinase-dependent signaling pathways. Proc Natl Acad Sci USA 1996;93: 14845–50.

    Article  PubMed  CAS  Google Scholar 

  8. Chaffanet M, Popovici C, Leroux D, et al. t(6;8), t(8;9) and t(8;13) translocations associated with stem cell myeloproliferative disorder have close or identical breakpoints in chromosome region 8p11-12. Oncogene 1998;16:945–9.

    Article  PubMed  CAS  Google Scholar 

  9. Deininger MWN, Goldman JM, Lydon N, Melo JV. The tyrosine kinase inhibitor CPG57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 1997;90: 4947–52.

    Google Scholar 

  10. Elsner S, Martin, B, Rode C, Wassman B, Ganser A, Hoelzer D. An uncommon translocation t(6;8), associated with atypical acute myeloid leukaemia/myeloproliferative disease detected by fluorescence in-situ hybridization. Br J Haematol 1994;87:124.

    Google Scholar 

  11. Fagan K, Hyde S, Harrison P. Translocation (8;13) and T-cell lymphoma. A case report. Cancer Genet Cytogenet 1993;65:71–3.

    Article  PubMed  CAS  Google Scholar 

  12. Friedhoff F, Rajendra B, Moody R, Alapatt T. Novel reciprocal translocation between chromosomes 8 and 9 found in a patient with myeloproliferative disorder. Cancer Genet Cytogenet 1983;9:391–4.

    Article  PubMed  CAS  Google Scholar 

  13. Gabrilove JL, White K, Rahman Z, Wilson EL. Stem cell factor and basic fibroblast growth factor are synergistic in augmenting committed myeloid progenitor cell growth. Blood 1994;83:907–10.

    PubMed  CAS  Google Scholar 

  14. Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor β to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12), chromosomal translocation. Cell 1994;77:307–16.

    Article  PubMed  CAS  Google Scholar 

  15. Golub TR, Goga A, Barker GF, et al. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol 1996;16:4107–16.

    PubMed  CAS  Google Scholar 

  16. Inhorn RC, Aster JC, Roach SA, et al. A syndrome of lymphoblastic lymphoma, eosinophilia, and myeloid hyperplasia/malignancy associated with t(8;13)(p11;q11): description of a distinctive clinicopathologic entity. Blood 1995;85:1881–7.

    PubMed  CAS  Google Scholar 

  17. Jotterand-Bellomo M, Muhlematter D, Wicht M, Delacretaz F, Schmidt PM. t(8;9)(p11;q32) in atypical chronic myeloid leukaemia: a new cytogenetic-clinicopathologic association?. Br J Haematol 1992;81:307–9.

    Article  PubMed  CAS  Google Scholar 

  18. Kempski H, MacDonald D, Michalski AJ. et al. Localization of the 8;13 translocation breakpoint associated with myeloproliferative disease to a 1.5 Mbp region of chromosome 13. Genes Chromosom Cancer 1995;12:283–7.

    Article  PubMed  CAS  Google Scholar 

  19. Kouhara H, Hadari YR, Spivak Kroizman T, et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 1997;89:693–702.

    Article  PubMed  CAS  Google Scholar 

  20. Leslie J, Barker T, Glancy M, Jennings B, Pearson J. t(8;13)(p11;q12) translocation in a myeloproliferative disorder associated with a T-cell non-Hodgkin lymphoma. Br J Haematol 1994;86:876–8.

    Article  PubMed  CAS  Google Scholar 

  21. Lewis JP, Jenks H, Lazerson J. Philadelphia chromosomenegative chronic myelogenous leukemia in a child with t(8;9)(p11 or 12;q34). Am J Pediatr Hematol Oncol 1983;5:265–9.

    PubMed  CAS  Google Scholar 

  22. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of ber-abl oncogene products. Science 1990;247:1079–82.

    Article  PubMed  CAS  Google Scholar 

  23. Macdonald D, Aguiar RCT, Mason PJ, Goldman JM, Cross NCP. A new myeloproliferative disorder associated with chromosomal translocations involving 8p11: a review. Leukemia 1995;9:1628–30.

    PubMed  CAS  Google Scholar 

  24. MacDonald D, Sheerin SM, Cross NCP, Spencer A, Goldman JM. An atypical myeloproliferative disorder with t(8;13)(p11;q12) A third case. Br J Haematol 1994;86:879–80.

    Article  PubMed  CAS  Google Scholar 

  25. Mason IJ. The ins and outs of fibroblast growth factors. Cell 1994;78:547–52.

    Article  PubMed  CAS  Google Scholar 

  26. McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Ber is essential for the transforming function of Ber-Abl oncoproteins Mol Cell Biol 1993;13:7587–95.

    PubMed  CAS  Google Scholar 

  27. McWhirter JR, Wang JY. Activation of tyrosinase kinase and microfilament-binding functions of c-abl by ber sequences in ber/abl fusion proteins. Mol Cell Biol 1991;11:1553–65.

    PubMed  CAS  Google Scholar 

  28. Michaux L, Mecucci C, Pereira-Velloso ER, et al. About the t(8;13)(p11;q12) clinico-pathologic entity. Blood 1996;87:1658–9.

    PubMed  CAS  Google Scholar 

  29. Muller AJ, Young JC, Pendergast AM, et al. BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias. Mol Cell Biol 1991;11:1785–92.

    PubMed  CAS  Google Scholar 

  30. Naeem R, Singer S, Fletcher JA. Translocation t(8;13)(p11;q11-12) in stem cell leukemia/lymphoma of T-cell and myeloid lineages. Genes Chromosom Cancer 1995;12:148–51.

    Article  PubMed  CAS  Google Scholar 

  31. Nakayma H, Inamitsu T, Ohga S, et al. Chronic myelomonocytic leukaemia with t(8;9)(p11;q34) in childhood: an example of the 8p11, myeloproliferative disorder?. Br J Haematol 1996;92:692–5.

    Article  Google Scholar 

  32. Oscier DG, Mufti GJ, Gardiner A, Hamblin TJ. Reciprocal translocation between chromosomes 8 and 9 in atypical chronic myeloid leukaemia. J Med Genet 1985;22:398–410.

    Article  PubMed  CAS  Google Scholar 

  33. Papadopoulos P, Ridge SA, Boucher CA, Stocking C, Wiedemann LM. The novel activation of ABL by fusion to an ets-related gene, TEL. Cancer Res 1995;55:34–8.

    PubMed  CAS  Google Scholar 

  34. Pebusque MJ, Popovici C, Guasch C, et al., Fibroblast growth factor receptor 1 is fused to different unrelated genes in a stem cell myeloproliferative disorder linked to 8p11-12 chromosomal region. Blood 1998;92:594a abstract.

    Google Scholar 

  35. Peeters P, Raynaud SD, Cools J, et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 1997;90:2535–40.

    PubMed  CAS  Google Scholar 

  36. Popovici C, Adelaide J, Ollendorff V, et al. Fibroblast growth factor receptor 1 is fused to FIM in stem-cell myeloproliferative disorder with t(8;13)(p12;q12). Proc Natl Acad Sci USA 1998;95:5712–7.

    Article  PubMed  CAS  Google Scholar 

  37. Rao PH, Cesarman G, Coleman M, Acaroon S, Verma RS. Cytogenetic evidence for extramedullary blast crisis with t(8;13)(q11;p11) in chronic myelomonocytic leukemia. Acta Haematol 1992;88:201–3.

    Article  PubMed  CAS  Google Scholar 

  38. Reiter A, Sohal J, Kulkarni S, et al. Consistent fusion of ZNF198 to the fibroblast growth factor receptor-1 in the t(8;13)(p11;q12) myeloproliferative syndrome. Blood 1998;92:1735–42.

    PubMed  CAS  Google Scholar 

  39. Ross T, Bernard OA, Berger R, Gilliland G. Fusion of Huntington interacting protein 1 to platelet-derived growth factor β receptor (PDGFRβ) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood 1998; 91:4419–26.

    PubMed  CAS  Google Scholar 

  40. Smedley D, Hamoudi, R, Clark J, et al. The t(8;13) (p11;q11-12) rearrangement associated with an atypical myeloproliferative disorder fuses the fibroblast growth factor receptor 1 gene to a novel gene RAMP. Hum Mol Genet 1998;7:637–42.

    Article  PubMed  CAS  Google Scholar 

  41. Van den Berg H, Kroes W, Van der Schoot CE, et al. A young child with acquired t(8;9)(p11;q34): additional proof that 8p11 is involved in mixed myeloid/T lymphoid malignancies. Leukemia 1996;10:1252–3.

    PubMed  Google Scholar 

  42. Vannier JP, Bizet M, Bastard C, Bernard A, Ducastelle T, Tron P. Simultaneous occurrence of a T-cell lymphoma and a chronic myelogenous leukemia with an unusual karyotype. Leuk Res 1984;8:647–57.

    Article  PubMed  CAS  Google Scholar 

  43. Wilson EL, Rifkin DB, Kelly F, Hannocks MJ, Gabrilove JL. Basic fibroblast growth factor stimulates myelopoiesis in long-term human bone marrow cultures. Blood 1991;77:954–60.

    PubMed  CAS  Google Scholar 

  44. Xiao S, Nalabolu SR, Aster JC, et al. FGFR 1 is fused with a novel zinc-finger gene, ZNF 198, in the t(8;13) leukaemia/lymphoma syndrome. Nat Genet 1998;18:84–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Reiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiter, A., Hehlmann, R., Goldman, J.M. et al. Die 8p11-myeloproliferative Erkrankung. Med Klin 94, 207–210 (1999). https://doi.org/10.1007/BF03044856

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044856

Schlüsselwörter

Key Words

Navigation