Skip to main content
Log in

Mechanismen der Plaquestabilisierung

Mechanisms of plaque stabilization

  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Zahlreich angiographisch kontrollierte Regressionsstudien haben gezeigt, daß die medikamentöse Cholesterinsenkung zu einer deutlichen Reduktion kardiovaskulärer Komplikationen führt, aber kaum den angiographisch nachweisbaren Stenosegrad beeinflußt. Diese Studien haben zu einem neuen Paradigma der koronaren Herzkrankheit bzw. der arteriosklerotischen Plaque geführt, das heißt, die klinische Prognose wird nicht nur durch den Stenosegrad, sondern vielmehr durch die Struktur bzw. Verletzbarkeit der Plaque bestimmt. Dementsprechend wird beispielhaft eine stabile von einer instabilen vulnerablen Plaque unterschieden. Die vulnerable instabile Plaque ist durch einen relativ großen lipidreichen Kern und eine dünne fibröse Kappe gekennzeichnet. Reißt diese Kappe ein, kommt es zu einem akuten thrombogenen Geschehen, das in dem plötzlichen Auftreten einer instabilen Angina-pectoris-Symptomatik oder eines Myokardinfarktes resultieren kann. In der letzten Zeit mehren sich die klinisch-experimentellen Hinweise, daß Cholesterinsynthesehemmer bzw. Statine möglicherweise nicht nur das Plasmacholesterin senken, sondern auch direkte Effekte auf die Gefäßwand haben. So ist durch mehrere Studien gezeigt worden, daß eine effektive cholesterinsenkende Therapie mit einer Verbesserung der endothelialen Dysfunktion assoziiert ist. Ferner kann die Therapie mit Statinen zu einer Verkleinerung des lipidreichen Kerns sowie zu einer Verminderung der Makrophagenaktivierung führen und die Proliferation der glatten Gefäßmuskelzellen beeinflussen. Dementsprechend muß die klinische Perspektive künftig darin liegen, die Vulnerabilität bzw. Instabiität von Plaques klinisch und morphologisch besser zu charakterisieren, um dann gegebenenfalls spezifische Ereignisse, die zu akuten Komplikationen führen, wie zum Beispiel das Einrißrisiko der vulnerablen Plaque, therapeutisch bzw. präventiv zu reduzieren.

Abstract

Numerous angiographic control regression studies have demonstrated that aggressive reduction of plasma cholesterol significantly reduces the incidence of clinical overt cardiovascular complications, but has almost no effect on the angiographically determined luminal diameter of the coronary arteries. These, as well as other morphological and molecular studies have led to a new paradigm of coronary heart disease, i.e. clinical prognosis is not mainly determined by the extent of a single stenosis but by the number and biological nature of atherosclerotic plaque. Accordingly, stable plaques can be differentiated from instable or vulnerable plaques. The vulnerable or instable plaque is characterized by a large lipid-rich core with surrounding inflammation and a thin friable overlying fibrous cap susceptible to rupture or fissuring and thereby a high risk of thrombus formation. Rupture and thrombus formation can cause an acute coronary syndrome, such as unstable angina or myocardial infarction. There is increasing clinical and experimental evidence that statins do not only lower plasma cholesterol, but might also have direct effects on the vessel wall, possibly explaining early benefits in cardiovascular complications. Reduction of plasma cholesterol by lipid lowering therapy has been shown to significantly improve paradoxic vasoconstriction of cardiac vessels, a phenomenon indicating endothelial dysfunction. In addition, lipid lowering therapy can result in a diminution of the lipid-rich core, a reduction of inflammatory cells within the plaques, decreased macrophage activation as well as foam cell formation and events related to thickening of the fibrous cap. A clinical prospective should be to better clinically morphologically characterize the vulnerability of plaques in order to therapeutically and preventively reduced specific events leading to acute coronary syndromes, such as unstable angina or myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Aikawa M, Rabkin E, Okada Y, et al. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma. A potential mechanism of lesion stabilization. Circulation 1998;97:2433–44.

    PubMed  CAS  Google Scholar 

  2. Aikawa M, Voglic S, Rabkin E, et al. An HMG-CoA reductase inhibitor (cerivastatin) suppresses accumulation of macrophages expressing matrix metallopoteinases and tissue factor in atheroma of WHHI rabbits. Circulation 1998;Suppl:A231.

  3. Blumberg B, Evans RM. Orphan nuclear receptors-new ligands and new possibilities. Gens & Development 1998;12:3149–55.

    Article  CAS  Google Scholar 

  4. Brown BG, Fuster V. Impact of management in stabilization of coronary disease. In: Fuster V, Ross F, Topol EJ, eds. Atherosclerosis and coronary artery disease. Vol 1. Philadelphia-New York: Lippincott-Raven Publ., 1996:191–205.

    Google Scholar 

  5. Brown MS, Goldstein JL. SREBP-pathway: regulation of cholesterol metabolism by proteolysis of a mambrane bound transcription factor. Cell 1997;89:331–40.

    Article  PubMed  CAS  Google Scholar 

  6. Brown BG, Zhao X-Q, Sacco DE, Albers JJ. Lipid lowering and plaque regression. Circulation 1993;87:1781–91.

    PubMed  CAS  Google Scholar 

  7. Celermajer DS. Endothelial dysfunction: does it matter? Is it reversible? JACC 1997;30:325–33.

    PubMed  CAS  Google Scholar 

  8. Edwards PA, Ericsson J. Signaling molecules derived from the cholesterol biosynthetic pathway: mechanisms of action and possible roles in human disease. Curr Opin Lipidol 1998;9:433–40.

    Article  PubMed  CAS  Google Scholar 

  9. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657–71.

    PubMed  CAS  Google Scholar 

  10. Fuster V, Poon M, Willerson JT. Learning from the transgenic mouse. Circulation 1997;97:16–8.

    Google Scholar 

  11. George SJ. Tissue inhibitors of metalloproteinases and metallo-proteinases in atherosclerosis. Curr Opin Lipidol 1998;9:413–23.

    Article  PubMed  CAS  Google Scholar 

  12. Greaves DR, Gough PJ, Gordon S. Recent progress in defining the role of scavenger receptors in lipid transport, atherosclerosis and host defence. Curr Opin Lipidol 1998;9:425–32.

    Article  PubMed  CAS  Google Scholar 

  13. Holvoet P, Vanhaecke J, Janssens S, et al. Oxidized LDL and malonidaldehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation 1998; 98:1487–94.

    PubMed  CAS  Google Scholar 

  14. Kinlay S, Selwyn AP, Delagrange D, et al. Biological mechanisms for the clinical success of lipid-lowering in coronary artery disease and the use of surrogate end-points. Curr Opin Lipidol 1996;7:389–97.

    Article  PubMed  CAS  Google Scholar 

  15. Klouche M, Gottschling S, Gerl V, et al. Atherogenic properties of enzymatically degraded LDL. Selective induction of MCP-1 and cytotoxic effects on human macrophages. Arterioscler Thromb Vasc Biol 1998;18:1376–85.

    PubMed  CAS  Google Scholar 

  16. Lacoste L, Lam JYT, Hung J, et al. Hyperlipidemia and coronary disease. Correction of the increased thrombogenic potential with cholesterol reduction. Circulation 1995;92:3172–7.

    PubMed  CAS  Google Scholar 

  17. Libby P. Molecular basis of the acute coronary syndrome. Circulation 1995;91:2844–85.

    PubMed  CAS  Google Scholar 

  18. Mosca L. Estrogen and atherosclerosis. J Invest Med 1998;46:381–5.

    CAS  Google Scholar 

  19. Müller-Wieland D, Faust M, Kotzka J, et al. Plaquestabilisierung und Endothelschutz durch Cholesterinsynthesehemmer. Herz 1999;24 (im Druck).

  20. Müller-Wieland D, Faust M, Krone W. Cholesterinsynthesehemmer — Klinische Studien zur Senkung des koronaren Risikos und Plaque-Stabilisierung. Internist 1998;39:934–42.

    Article  PubMed  Google Scholar 

  21. Müller-Wieland D, Kotzka J, Krone W. Stabilization of atherosclerotic plaque during lipid lowering. Curr Opin Lipidol 1997;8:348–53.

    Article  PubMed  Google Scholar 

  22. Münzel T, Heitzer T, Harrison DG. The physiology and pathophysiology of the nitric oxide/superoxide system. Herz 1997;22:157–72.

    Article  Google Scholar 

  23. Ridker PM, Rifai N, Pfeffer MA, et al. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Circulation 1998;98:839–44.

    PubMed  CAS  Google Scholar 

  24. Rosenson RS, Tangney CC. Antiatherothrombotic properties of statins. JAMA 1998;279:1643–50.

    Article  PubMed  CAS  Google Scholar 

  25. Ross R, Fuster V. The pathogenesis of atherosclerosis. In: Fuster V, Ross R, Topol EJ, eds. Atherosclerosis and coronary artery disease, Vol 1. Philadelphia-New York: Lippincott-Raven Publ. 1996:441–60.

    Google Scholar 

  26. Springer TA, Cybulsky MI. Traffic signals on endothelium for leukocytes in health, inflammation, and atherosclerosis, Vol 1. In: Fuster V, Ross R, Topol EJ. Atherosclerosis and coronary artery disease, eds. Philadelphia-New York: Lippincott-Raven Publ., 1996:511–37.

    Google Scholar 

  27. Stary HC, Chandler AB, Glagov S, et al. A definition of intimal fatty streak, and intermediate lesions of atherosclerosis. A report from the committee on vascular lesions of the council on atherosclerosis, American Heart Association. Circulation 1994;89:2462–78.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Wieland, D., Faust, M., Kotzka, J. et al. Mechanismen der Plaquestabilisierung. Herz 24, 26–31 (1999). https://doi.org/10.1007/BF03043815

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03043815

Schlüsselwörter

Key Words

Navigation