Skip to main content
Log in

Finite element analysis in vertebrate palaeontology

  • Engineering and Constructional Morphology
  • Published:
Senckenbergiana lethaea Aims and scope Submit manuscript

Abstract

The Finite Element Analysis (FEA) is a numerical method which allows to analyse the static and dynamic behaviour of complex structures. A structure is substituted by a model consisting of a number of small, well-defined elements, each interconnected by nodes. Within the element attributes and material properties, the model can be exposed to static or dynamic loads. The displacements of the structure as the reaction to its loadings are calculated. Other data such as stress or strain at localized points in the structure are derived from these displacements.

Originally developed for engineering, FEA soon was introduced to human medicine by modelling the behaviour of bone, teeth, cartilage and soft tissue, mostly in relation with the design and materials of implants. However, in biology and palaeontology the use of FEA is still at the beginning. One reason for this is might be the greater complexity of organisms compared to objects designed by engineers. Also the different modifications and the mechanical properties of hard- and soft-tissue in organisms mostly are still not well understood.

The use of FEA in enables the biologist/palaeontologist to testify biomechanical hypotheses and to simulate different load cases on the numerical model. Its results depend on the boundary conditions given to the model, the material properties, the nature of forces applied to the model and the objective target under which the model is set up. This means that results given by a FEA analysis never exactly represent the given system exactly; they have to be evaluated and discussed critically by paying attention to the simplifications introduced during the modelling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagge, M. (2000): A model of bone adaptation as an optimization process. — Journal of Biomechanics,33: 1349–1357, 7 figs.; London.

    Article  Google Scholar 

  • Beek, M.,Koolstra, J.H.,van Ruijven, L.J. &van Eijden, T.M.G.J. [eds] (2000): Three-dimensional finite element analysis of the human temperomandibular joint disc. — Journal of Biomechanics,32: 307–316; London.

  • Beitz, W. &Grote, K.-H. (2001): Dubbel — Taschenbuch für den Maschinenbau. — 1832 p. (20th edition); Berlin (Springer Verlag).

    Google Scholar 

  • Bennett, M. B. (1992): Empirical Studies of Walking an Running. — In:R. M. Alexander [ed], Mechanics in Animal Locomotion, Advances in Comparative and Environmental Physiology,11: 141–166, 12 figs; Berlin (Springer-Verlag).

    Google Scholar 

  • Bischoff, J. E., Arruda, E. M. &Grosh, K. (2000): Finite element modelling of human skin using an isotropic, nonlinear elastic constitutive model. — Journal of Biomechanics,33: 645–652; 6 figs., London.

    Article  Google Scholar 

  • Bock, W. J. (1991): Explanations in Konstruktionsmorphologie and Evolutionray Morphology. — In:N. Schmidt-Kittler &K. Vogel, Constructional Morphology and Evolution: 9–29; Berlin (Springer-Verlag).

    Google Scholar 

  • Carter, D. R., Mikic, B. &Padian, K. (1998): Epigenetic mechanical factors in the evolution of long bone epiphyses. — Zoological Journal of the Linnean Society,123: 163–178, 7 figs.; London.

    Article  Google Scholar 

  • Cubos, J. &Casinos, A. (2000): Incidence and mechanical significance of pneumatization in the long bones of birds. — Zoological Journal of the Linnean Society,130: 499–510, 3 figs.; London.

    Article  Google Scholar 

  • Currey, J. D. (1984): The mechanical adaptations of bones. — 294 p.; Princeton (Princeton University Press).

    Google Scholar 

  • Cody, D. D., Gross, G. J., Hou, F. J., Spencer, H. J., Goldstein, S. A. &Fyhrie, D.P. (1999): Femoral strength is better predicted by finite element models than QCT and DXA. — Journal of Biomechanics,32: 1013–1020, 5 figs.; London.

    Article  Google Scholar 

  • Duda, G. N., Heller, M., Albinger, J., Schulz, O., Schneider, E. &Claes, L. (1998): Influence of muscle force on femoral strain distribution. — Journal of Biomechanics,31: 841–846, 3 figs.; London.

    Article  Google Scholar 

  • Goldsmith, A. A. J., Hayes, A. &Clift, S. E. (1996): Application of finite elements to the stress analysis of articular cartilage. — Medical Engineering & Physics,18(2): 89–98, 5 figs., London.

    Article  Google Scholar 

  • Gordon, J. E. (1988): Strukturen unter Stress: mechanische Belastbarkeit in Natur und Technik. — 205 p.; Heidelberg (Spektrum der Wissenschaften-Verlagsanstalt).

    Google Scholar 

  • Gutmann, W. F. (1995): Die Evolution hydraulischer Konstruktionen: organismische Wandlung statt altdarwinistischer Anpassung. — 220 p., Frankfurt (Kramer).

    Google Scholar 

  • Gutmann, W. F. &Edlinger, K. (1994): Morphodynamik und Maschinentheorie: die Grundlage der kausalen Morphologie. — In: W. F. Gutmann, D. Mollenhauer & D.S. Peters, Morphologie und Evolution: Symposien zum 175jährigen Jubiläum der Senckenbergischen Naturforschenden Gesellschaft, Senckenberg Buch70: 177–200; Frankfurt (Waldemar Kramer).

    Google Scholar 

  • Harrigan, T. P. &Hamilton, J. J. (1994): Bone remodelling and structural optimization. — Journal of Biomechanics,27(3): 323–328; London.

    Article  Google Scholar 

  • Herkner, B. (1999): Über die evolutionäre Entstehung des tetrapoden Lokomotionsapparates der Landwirbeltiere — Ein konstruktionsmorphologisches Transformationsmodell auf evolutionstheoretischer Grundlage. — Carolinea, Beiheft13: 1–353; Karlsruhe.

    Google Scholar 

  • Kabel, J., Odgaard, A., van Rietbergen, B. &Huiskes, R. (1999a): Conncetivity and the elastic properties of cancellous bone. — Bone,24(2): 115–120; New York.

    Article  Google Scholar 

  • Kabel, J., van Rietbergen, B., Odgaard, A. &Huiskes, R. (1999b): Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. — Bone,25(4): 481–486; New York.

    Article  Google Scholar 

  • Keaveny, T. M., Borchers, R. E., Gibson, L. J. &Hayes, W. C. (1993): Trabecular bone modulus and strength can depend on specimen geometry. — Journal of Biomechanics,26(8): 991–1000, London.

    Article  Google Scholar 

  • Lerner, A. L., Kuhn, J. L. &Holliste, S. J. (1998): Are regional variations in bone growth related to mechanical stress and strain parameters? — Journal of Biomechanics,31: 327–335, 7 figs., London.

    Article  Google Scholar 

  • Mahner, M. &Bunge, M. (2000): Philosophische Grundlagen der Biologie. — 402 p., Berlin (Springer).

    Google Scholar 

  • Martin, R. B., Burr, D. B. &Sharkey, N. A. (1998): Skeletal Tissue Mechanics. — 392 pp, New York (Springer).

    Google Scholar 

  • Marx, A. (1994): Simulationsrechnungen und Untersuchungen zum physikalischen Verhalten von Zahnhartgeweben hypsodonter Herbivoren. — Unpublished Ph.D. Thesis, Rheinische Friedrich Wilhelms-Universität Bonn, 98 pp, Bonn.

  • Miller, K. (1999): Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. — Journal of Biomechanics,32: 531–537, 3 figs., London.

    Article  Google Scholar 

  • Natke, H.-G. (1999): Modelle und Wirklichkeit: Eine systemische Betrachtung. — 60 p.; Unser Verlag (Hannover).

    Google Scholar 

  • Odgaard, A. (1997): Three-dimensional methods for Quantification of Cancellous Bone Architecture. — Bone,20(4): 315–328; New York.

    Article  Google Scholar 

  • Özkaya, N., &Nordin, M., (1998): Fundamentals of Biomechanics: Equlibirum, Motion, and Deformation. — 2nd edition, New York (Springer).

    Google Scholar 

  • Otten, E. &Hulliger, M. (1994/95): A finite-element approach to the study of functional architecture in skeletal muscle. — Zoology,98: 233–242, 6 figs.; Jena.

    Google Scholar 

  • Pfretzschner, H. U. (1994): Biomechanik der Schmelzmikrostruktur in den Backenzähnen von Grossäugern. — Palaeontographica, Abt. A.,234(1–3): 1–88; Stuttgart.

    Google Scholar 

  • Rayfield, E. J., Norman, D.B., Horner, C.C, Horner, J.R., Smith, P.M., Thomason, J.J. &Upchurch, P. (2001): Cranial design and function in a large theropod dinosaur. — Nature,409: 1033–1037; London.

    Article  Google Scholar 

  • Rensberger, J. M. (1995): Determination of stresses in mammalian dental enamel and their relevance of feeding behaviors in extinct taxa. — In: J. Thomason, Functional morphology in vertebrate paleontology: 151–172, 19 figs.; Cambridge (Cambridge University Press).

    Google Scholar 

  • Rice, J. C., Cowin S. C. &Bowman, J. A. (1988): On the dependency of the elasticity and strength of cancellous bone in apparent density. — Journal of Biomechanics,26: 111–119; London.

    Google Scholar 

  • Riess, J., Frey E., Begenat, R. &Weber E. (1989): Über die Schwierigkeit, aus Form- und Funktionsreihen stammesgeschichtliche Abläufe zu rekonstruieren. — In:K. Edlinger, Form und Funktion — Ihre stammesgeschichtlichen Grundlagen: 97–108; Wien (WUV).

    Google Scholar 

  • van Rietbergen, B., Weinans, H., Huiskes, R. &Odgaard, A. (1995): A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. — Journal of Biomechanics,25(1): 69–81; London.

    Article  Google Scholar 

  • van Rietbergen, B., Müller, R., Ulrich, D., Rüegsegger, P. &Huiskes, R. (1999): Tissue strength and strain in traberculae of a canine proximal femur can be quantified from computer reconstructions. — Journal of Biomechanics,32: 165–173; London.

    Article  Google Scholar 

  • Salisbury, S. (2001): A biomechanical transformation model for the evolution of the eusuchian-type bracing system. — PhD Thesis, Biological Sciences, University of New South Wales: 554 pp; Sydney.

  • Sander, P. M. (1999): The Microstructure of Reptilian Tooth Enamel: Terminology, Function, and Phylogeny. — Münchner Geowissenschaftliche Abhandlungen, Reihe A,38: 1–102, 13 figs.; München.

    Google Scholar 

  • Smeathers, J. E. (1992): Cartilage and Joints. — In:J. F. V. Vincent [ed.], Biomechanics — Materials: A Practical Approach: 99–132, 18 figs.; Oxford (Oxford University Press).

    Google Scholar 

  • Spatz, H.-C., O’Leary, E. J. &Vincent J. F. V. (1996): Young’s moduli and shear moduli in cortical bone. — Proceedings of the Royal Society London, Series B,263: 287–294; London.

    Article  Google Scholar 

  • Töyräs, J., Lyyra-Laitinen, T., Niinnimäki, M., Lindgren, R., Nieminen, M. T., Kiviranta, I. &Jurvelin, J. S. (2001): Estimation of the Young’s modulus of articular cartilage using an arthroscopic indentation instrument and ultrasonic measurement of tissue thickness. — Journal of Biomechanics,34: 251–256; London.

    Article  Google Scholar 

  • Turner, C. H. &Burr, D. B. (1993): Basic Biomechanical Measurements of Bone: A Tutorial. — Bone,14: 595–608; New York.

    Article  Google Scholar 

  • Uchiyama, T., Tanizawa, T., Muramatsu, H., Endo, N., Takahashi, H. E. &Hara, T. (1999): Three-dimensional microstructural analysis of human trabercular bone in relation to its mechanical properties. — Bone,25(4): 487–491; New York.

    Article  Google Scholar 

  • Vogel, K. (1989): Konstruktionsmorphologie und Rekonstruktion der Stammesgeschichte. — In:K. Edlinger, Form und Funktion — Ihre stammesgeschichtlichen Grundlagen: 55–67; Wien (WUV).

    Google Scholar 

  • Vollmer, G. (1988): Was können wir wissen? Band 2: Die Erkenntnis der Natur. — 305 pp, Stuttgart (Hirzel).

    Google Scholar 

  • Wang, R. Z. &Weiner, S. (1998): Strain-structure relations in human teeth using Moiré fringes. — Journal of Biomechanics,31: 135–141; London.

    Article  Google Scholar 

  • Wolff, J. (1892): Das Gesetz der Transformation der Knochen. — 152 pp; Berlin (A. Horschwald).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fastnacht, M., Hess, N., Frey, E. et al. Finite element analysis in vertebrate palaeontology. Senckenbergiana lethaea 82, 194–206 (2002). https://doi.org/10.1007/BF03043784

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03043784

Key words

Navigation