Skip to main content
Log in

Expression von Selenoproteinen in Monozyten und Makrophagen — Implikationen für das Immunsystem

Expression of selenoproteins in monocytes and macrophages — Implications for the immune system

  • Published:
Medizinische Klinik Aims and scope Submit manuscript

Zusammenfassung

□ Monozyten differenzieren unter dem Einfluß von 1,25(OH)2 Vitamin D3 und anderen Faktoren aus myeloischen Vorläuferzellen. Koloniestimulierende Faktoren wie (Granulozyten-)Makrophagen-stimulierender Faktor (GMCSF und MCSF) propagieren die weitere Differenzierung zu Makrophagen. Die Aktivierung von Makrophagen und die Phagozytose von fremden Partikeln sind regelmä\ig begleitet von einem sogenannten „respiratory burst“, einer erhöhten Produktion von reaktiven Sauerstoffspezies (ROS), die durch den Enzymkomplex NADPH-Oxidase bewerkstelligt wird. Gleichzeitig wird eine Anzahl antioxidativer Enzyme exprimiert, um die Zelle vor den zytotoxischen Effekten der ROS zu schützen, die gegen die eingeschlossenen Mikroorganismen gerichtet sind und möglicherweise auch Genregulationen bewirken. Gut charakterisierte Selenoproteine, die in die antioxidative „Defense“-Reaktion der Zelle involviert sind, sind die selenabhängigen Glutathionperoxidasen (zytosolische [cGPx] und plasmatische [pGPx]) und die Thioredoxinreduktasen α und β (TrxRα/β). Das zytosolische Isoenzym der GPx (cGPx) und die TrxRα werden beide im Rahmen der Differenzierung durch 1,25 (OH)2 Vitamin D3 stimuliert. GPx-Isoenzyme neutralisieren H2O2. TrxR sind entweder direkt oder indirekt über ihren Kofaktor Thioredoxin in die Proteinfaltung involviert. Sie reduzieren Sulfhydrylgruppen und beeinflussen so zum Beispiel kritische Protein/Protein-Interaktionen und Protein/DNA-Interktionen; sie modulieren somit die Dimerisation und/oder die DNA-Bindung von Transkriptionsfaktoren (Glukokortikoidrezeptor und andere Steroidhormonrezeptoren, NFκB). Darüber hinaus wurde gezeigt, daß das antibiotische und zytotoxische Peptid NK-Lysin ein Substrat für die TrxRα ist (mit der Folge der Inaktivierung des Peptids), was nahelegt, daß TrxR ein protektiver Faktor für die Zelle selbst ist. Selen wird kontrolliert und spezifisch in Selenoproteine in Form von Selenozystein (Secys) eingebaut, welches in Anwesenheit einer dredimensionalen Haarnadelstruktur der 3′UTR (Secis-Element) am Codon UGA abgelesen wird, das ohne ein geeignetes Secis-Element und im Selenmangel als opales Stop-Codon fungiert. Die oben diskutierten Prozesse können also im Selenmangel alteriert sein und andererseits durch Selensupplementation moduliert werden.

□ Wir haben die TrxRα als 1,25(OH)2 Vitamin D3-responsives Protein in Monozyten charakterisiert und gezeigt, daß die Aktivität der GPx und der TrxR durch Selensupplementation in vitro und ex vivo stimuliert wird. Neuere Arbeiten zeigen, daß Thioredoxin, ein wichtiges Substrat der TrxR, nach Behandlung von Zellen mit H2O2 schnell in den Zellkern wandert. Darüber hinaus ist aber wenig bekannt über die Kompartimentalisierung des „respiratory burst“ in der Zelle und die intrazelluläre Lokalisation der antioxidativen Enzyme während dieses Vorgangs. Die Makrophagenfunktion ist alteriert, wenn der „respiratory burst“ insuffizient ist, wie zum Beispiel bei der hereditären chronischen granulomatösen Erkrankung. Andererseits ist diese aber auch gestört, wenn ein Defizit an antioxidativen Enzymen besteht. Thioredoxin wurde als Wachstumsfaktor für Lymphozyten identifiziert und ist in den „Crosstalk“ zwischen Makrophagen und Lymphozyten involviert. Die Relevanz der beschriebenen und anderer noch nicht charakterisierter Selenoproteine von Monozyten bleibt näher zu charakterisieren, wie auch die der Supplementation von Selen generell in der Nahrungskette und speziell in Situationen von kritischen Infektionen und bei der Entwicklung der Autoimmunität.

Abstract

□ Monocytes differentiate from myeloid precursors towards the macrophage state of differentiation under the influence of 1,25-dihydroxy vitamin D3 (1,25 [OH]2 vitamin D3) and other factors and this is further propagated by colony stimulating factors (MCSF and GMCSF). Macrophage activation and phagocytosis of foreign particles are regularly accompanied by a so called “respiratory burst”, an increase in the production of reactive oxygen species (ROS), exerted by the enzyme complex NADPH oxidase. A number of antioxidant enzymes is expressed at the same time to protect the cells from the cytotoxic effects of ROS directed against engulfed microorganisms. The selenium-dependent glutathione peroxidases and thioredoxin reductases are important examples. The cytosolic GPx isoenzyme (cGPx) and thioredoxin reductase α (TrxRα) are upregulated during the process of differentiation and under the influence of 1,25 (OH)2 vitamin D3. GPx isoenzymes neutralize H2O2. TrxR reduce sulfhydryl-groups like in cysteins either directly or via their cofactor thioredoxin and thus are involved in protein folding and critical protein-protein and protein-DNA interactions, e. g. modulation of dimerization and/or DNA-binding and ligand binding of transcription factors (glucocorticoid receptor and other steroid receptors, NFκB). In addition, the antibiotic peptide NK-lysin was shown to be a substrate for TrxRα, suggesting that TrxR protects the cell itself from the cytotoxic effects of NK-lysin. Selenium is incorporated into selenocysteine (Secys) in a regulated fashion in the presence of a hairpin structure (Secis element) in the 3′UTR of selenoprotein genes. Secis elements direct the insertion of Secys at UGA codons, which function as opal stop codons in the absence of a suitable Secis element and in selenium deficiency. The above mentioned processes might therefore be altered in relative selenium deficiency or vice versa be upregulated through selenium supplementation.

□ We have shown that TrxRα is a 1,25 (OH)2 vitamin D3-responsive early gene in monocytic cells and that TrxR activity as well as GPx activity in these cells can be upregulated by the addition of selenium in vitro and ex vivo. Recent work demonstrates that thioredoxin rapidly enters the cell nucleus upon treatment of cells with H2O2, but little is known about the compartimentalization of the respiratory burst and the intracellular localization of antioxidant enzymes during that process. Macrophage function is insufficient if the generation of a respiratory burst is altered like in hereditary chronic granulomatous disease on one hand, but on the other hand is as well disturbed, if there is a lack in antioxidant enzyme activity. Thioredoxin has been identified as a lymphocyte growth factor and might therefore be involved in the crosstalk between macrophages and lymphocytes. The relevance of the above mentioned and other yet undefined monocytic selenoproteins remains to be elucidated in detail as well as the relevance of selenium supplementation in nutrition in general and in situations of critical infectious disease and autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Andersson M, Gunne H, Agerberth B, et al. NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity. EMBO J 1995;14:1615–25.

    PubMed  CAS  Google Scholar 

  2. Andersson M, Holmgren A, Spyrou G. NK-lysin, a disulfide-containing effector peptide of T-lymphocytes, is reduced and inactivated by human thioredoxin reducase. Implication for a protective mechanism against NK-lysin cytotoxicity. J Biol Chem 1996;271:10116–20.

    Article  PubMed  CAS  Google Scholar 

  3. Arteel GE, Briviba K, Sies H. Function of thioredoxin reductase as a peroxynitrite reductase using selenocystine or ebselen. Chem Res Toxicol 1999;12:264–9.

    Article  PubMed  CAS  Google Scholar 

  4. Atkins K, Berry JE, Zhang WZ, et al. Coordinate expression of OPN and associated receptors during monocyte/macrophage differentiation of HL-60 cells. J Cell Physiol 1998;175:229–37.

    Article  PubMed  CAS  Google Scholar 

  5. Avissar N, Whitin JC, Allen PZ, et al. Plasma seleniumdependent glutathione peroxidase. Cell of origin and secretion. J Biol Chem 1989;264:15850–5.

    PubMed  CAS  Google Scholar 

  6. Baker A, Payne CM, Briehl MM, et al. Thiordoxin, a gene found overexpressed in human cancer, inhibits apoptosis in vitro and in vivo. Cancer Res 1997;57:5162–7.

    PubMed  CAS  Google Scholar 

  7. Berry MJ, Larsen PR. Recognition of UGA as a selenocysteine codon in eucaryotes: a review of recent progress. Biochem Soc Trans 1993;21:827–32.

    PubMed  CAS  Google Scholar 

  8. Biskobing DM, Fan D, Rubin J. c-fms mRNA is regulated posttranscriptionally by 1,25(OH)2 D3 in HL-60 cells. Calcif Tissue Int 1997;61:205–9.

    Article  PubMed  CAS  Google Scholar 

  9. Brigelius-Flohé R, Aumann KD, Blocker H, et al. Phospholipid-hydroperoxide glutathione peroxidase. Genomic DNA, cDNA, and deduced amino acid sequence. J Biol Chem 1994;269:7342–8.

    PubMed  Google Scholar 

  10. Chang PL, Ridall AL, Prince CW. Calcitriol regulation of osteopontin expression in mouse epidermal cells. Endocrinology 1994;135:863–9.

    Article  PubMed  CAS  Google Scholar 

  11. Chu FF, Esworthy RS, Doroshow JH, et al. Expression of plasma glutathione peroxidase in human liver in addition to kidney, heart, lung, and breast in humans and rodents. Blood 1992;79:3233–8.

    PubMed  CAS  Google Scholar 

  12. Das KC, Guo XL, White CW. Induction of thioredoxin and thioredoxin reductase gene expression in lungs of newborn primates by oxygen. Am J Physiol 1999;276:530–9.

    Google Scholar 

  13. Dreher I, Schmutzler C, Jakob F, et al. Expression of selenoproteins in various rat and human tissues and cell lines. J Trace Elem Med Biol 1997;11:83–91.

    PubMed  CAS  Google Scholar 

  14. Ebert-Duming R, Schütze N, Jakob F. The thioredoxin reductase/thioredoxin system in cells of the monocyte/macrophage pathway of differentiation. Biofactors, in press.

  15. Gasdaska PY, Berggren MM, Berry MJ, et al. Cloning, sequenzing and functional expression of a novel human thiordoxin reductase. FEBS Lett 1999;442:105–11.

    Article  PubMed  CAS  Google Scholar 

  16. Gasdska PY, Gasdaska JR, Cochran S, et al. Cloning and sequencing of a human thioredoxin reductase. FEBS Lett 1995;373:5–9.

    Article  Google Scholar 

  17. Gladyshev VN, Jeang KT, Stadtman TC. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci USA 1996;93:6146–51.

    Article  PubMed  CAS  Google Scholar 

  18. Gladyshev VN, Jeang KT, Wootton JC, et al. A new selenium containing protein— purification, characterization and cDNA sequence. J Biol Chem 1998;273:8910–5.

    Article  PubMed  CAS  Google Scholar 

  19. Gromer S, Arscott LD, Williams CH, et al. Human placenta thioredoxin reductase — isolation of the selenoenzyme, steady state kinetics and inhibition by therapeutic gold compounds. J Biol Chem 1998;273:20096–101.

    Article  PubMed  CAS  Google Scholar 

  20. Gromer S, Wissing J, Behne D, et al. A hypothesis on the catalytic mechanism of the selenoenzyme thioredoxin reductase. Biochem J 1998;332:591–2.

    PubMed  CAS  Google Scholar 

  21. Hirota K, Matsui M, Iwata S, et al. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and ref-1. Proc Natl Acad Sci USA 1997;94:3633–8.

    Article  PubMed  CAS  Google Scholar 

  22. Hofmann ER, Boyanapalli M, Lindner DJ, et al. Thioredoxin reductase mediates cell death effects of the combination of beta interferon and retinoic acid. Molec Cell Biol 1998;18:6493–504.

    PubMed  CAS  Google Scholar 

  23. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem 1989;264:13963–6.

    PubMed  CAS  Google Scholar 

  24. Holmgren A, Björnstedt M. Thioredoxin and thioredoxin reductase. Methods Enzymol 1996;252:199–208.

    Article  Google Scholar 

  25. Hori K, Hatfield D, Maldarelli F, et al. Selenium supplementation suppresses tumor necrosis factor alpha-induced human immunodeficiency virus type 1 replication in vitro. AIDS Res Hum Retroviruses 1997;13:1325–32.

    Article  PubMed  CAS  Google Scholar 

  26. Hyslop PA, Hinshaw DB, Scraufstatter IU, et al. Hydrogen peroxide as a potent bacteriostatic antibiotic: implications for host defense. Free Radic Biol Med 1995;19:31–7.

    Article  PubMed  CAS  Google Scholar 

  27. Jakob F, Mörk H, Schütze N, et al. Selenoproteine im Knochen, Gastrointestinaltrakt und in der Schilddrüse des Menschen. Med Klin 1997;92:Suppl III:24–6.

    Article  CAS  Google Scholar 

  28. Jakob F, Seufert J, Sarrazin C, et al. Topoisomerase I-inhibition enhances vitamin D-responsive expression of the receptor for lipopolysaccharide binding protein CD14. Biochem Biophys Res Comm 1994;199:531–9.

    Article  PubMed  CAS  Google Scholar 

  29. Jany B, Betz R, Schreck R. Activation of the transcription factor NF-kappa B in human tracheobronchial epithelial cells by inflammatory stimuli. Eur Respir J 1995;8:387–91.

    Article  PubMed  CAS  Google Scholar 

  30. Kamimura S, Gallieni M, Zhong M, et al. Microtubules mediate cellular 25-hydroxyvitamin D3 trafficking and the genomic response to 1,25-dihydroxyvitamin D3 in normal human monocytes. J Biol Chem 1995;270:22160–6.

    Article  PubMed  CAS  Google Scholar 

  31. Kim IY, Stadtman TC. Inhibition of NF-kappa B DNA binding and nitric oxide induction in human T cells and lung adenocarcinoma cells by selenite treatment. Proc Natl Acad Sci USA 1997;94:12904–7.

    Article  PubMed  CAS  Google Scholar 

  32. Köhrle J. Lokal activation and inactivation of thyroid hormones: the deiodinase family. Molec Cell Endocrinol 1999;151:103–19.

    Article  PubMed  Google Scholar 

  33. Lundstrom-Ljung J, Birnbach U, Rupp K, et al. Two resident ER-proteins, CaBP1 and CaBP2, with thioredoxin domains, are substrates for thioredoxin reductase: comparison with protein disulfide isomerase. FEBS Lett 1995;357:305–8.

    Article  PubMed  CAS  Google Scholar 

  34. Luthman M, Holmgren A. Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry 1982;21:6628–33.

    Article  PubMed  CAS  Google Scholar 

  35. Makino Y, Yoshikawa N, Okamoto K, et al. Direct association with thioredoxin allows redox regulation of glucocorticoid receptor function. J Biol Chem 1999;274:3182–8.

    Article  PubMed  CAS  Google Scholar 

  36. Marcocci L, Flohé L, Packer L. Evidence for a functional relevance of the selenocysteine residue in mammalian thioredoxin reductase. Biofactors 1997;6:351–8.

    Article  PubMed  CAS  Google Scholar 

  37. McKenzie RC, Rafferty TS, Beckert GJ. Selenium: an essential element for immune function. Immunol Today 1998;19:342–5.

    Article  PubMed  CAS  Google Scholar 

  38. Medhora MM, Teitelbaum S, Chappel J, et al. 1-alpha, 25-dihydroxyvitamin D3 up-regulates expression of the osteoclast integrin alpha n beta 3. J Biol Chem 1993;268:1456–61.

    PubMed  CAS  Google Scholar 

  39. Mitomo K, Nakayama K, Fujimoto K, et al. Two different cellular redox systems regulate the DNA-binding activity of the p50 subunit of NF-kappa B in vitro. Gene 1994;145:197–203.

    Article  PubMed  CAS  Google Scholar 

  40. Modolell M, Schaible UE, Rittig M, et al. Killing of Borrelia burgdorferi by macrophages is dependent on oxygen radicals and nitric oxide and can be enhanced by antibodies to outer surface proteins of the spirochete. Immunol Lett 1994;40:139–46.

    Article  PubMed  CAS  Google Scholar 

  41. Mörk H, Lex B, Scheurlen M, et al. Expression pattern of gastrointestinal selenoproteins — targets for selenium supplementation. Nutr Canc 1999;32:64–70.

    Article  Google Scholar 

  42. Newburger PE, Malawista SE, Dinauer MC, et al. Chronic granulomatous disease and glutathione peroxidase deficiency, revisited. Blood 1994;84:3861–9.

    PubMed  CAS  Google Scholar 

  43. Oblong JE, Gasdaska PY, Sherril K, et al. Purification of human thioredoxin reductase: properties and characterisation by adsorption and circular dicroism spectroscopy. Biochemistry 1993;32:7271–7.

    Article  PubMed  CAS  Google Scholar 

  44. Perkins SL, Kling SJ, Ross FP, et al. 1,25 Dihydroxyvitamin D3 stimulates differentiation of committed murine bone marrow-derived macrophage precursor cells. Endocrinology 1995;136:5643–50.

    Article  PubMed  CAS  Google Scholar 

  45. Rosen A, Lundman P, Carlsson M, et al. A CD4+ T cell line-secreted factor, growth promoting for normal and leukemic B cells, identified as thioredoxin. Int Immunol 1995;7:625–33.

    Article  PubMed  CAS  Google Scholar 

  46. Rosenblat M, Aviram M. Macrophage glutathione content and glutathione peroxidase activity are inversely related to cell-mediated oxidation of LDL: in vitro and in vivo studies. Free Radic Biol Med 1998;24:305–17.

    Article  PubMed  CAS  Google Scholar 

  47. Ruysschaert JM, Goormaghtigh E, Homble F, et al. Lipid membrane binding of NK-lysin. FEBS Lett 1998;425:341–4.

    Article  PubMed  CAS  Google Scholar 

  48. Sato K, Akaki T, Tomioka H. Differential potentiation of anti-mycobacterial activity and reactive nitrogen intermediate-producing ability of murine peritoneal macrophages activated by interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNFα). Clin Exp Immunol 1998:112:63–8.

    Article  PubMed  CAS  Google Scholar 

  49. Schenk H, Vogt M, Dröge W, et al. Thioredoxin as a potent costimulus of cytokine expression. J Immun 1996;156:765–71.

    PubMed  CAS  Google Scholar 

  50. Schütze N, Bachthaler M, Lechner A, et al. Identification by differential display PCR of the selenoprotein thioredoxin reductase as a 1α,25(OH)2-vitamin D3-responsive gene in human osteoblasts — regulation by selenite. Biofactors 1998;7:299–310.

    Article  PubMed  Google Scholar 

  51. Schütze N, Dreher I, Jakob F, et al. Neue menschliche Selenoproteine: Selenoprotein P und Thioredoxin-Reduktase. J Lab Med 1998;22:539–44.

    Google Scholar 

  52. Schütze N, Fritsche J, Ebert-Dümig R, et al. The selenoprotein thioredoxin reductase is regulated by 1,25-dihydroxy-vitamin D3 and adhesion in THP1 human myeloid leukemia cells and in peripheral blood monocytes. Biofactors, in press.

  53. Schwarz K, Foltz CM. Selenium is an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 1957;79:3292–3.

    Article  CAS  Google Scholar 

  54. Seres T, Ravichandran V, Moriguchi T, et al. Protein Sthiolation and dethiolation during the respiratory burst in human monocytes. A reversible post-translational modification with potential for buffering the effects of oxidant stress. J Immunol 1996;156:1973–80.

    PubMed  CAS  Google Scholar 

  55. Shen Q, Chada S, Whitney C, et al. Regulation of the human cellular glutathione gene during in vitro myeloid and monocytic differentiation. Blood 1994;84:3902–8.

    PubMed  CAS  Google Scholar 

  56. Shen Q, Leonard JL, Newburger PE. Structure and function of the selenium translation element in the 3′-untranslated region of human cellular glutathione peroxidase mRNA. RNA 1995;1:519–25.

    PubMed  CAS  Google Scholar 

  57. Spolarics Z. Endotoxin stimulates gene expression of ROS-eliminating pathways in rat hepatic endothelial and Kupffer cells. Am J Physiol 1996;270:G660–6.

    PubMed  CAS  Google Scholar 

  58. Stadtman TC. Selenocysteine. Ann Rev Biochem 1996; 65:83–100.

    Article  PubMed  CAS  Google Scholar 

  59. Tamura T, Stadtman TC. A new selenoprotein from human lung adenocarcinoma cells. Purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci USA 1996;93:1006–11.

    Article  PubMed  CAS  Google Scholar 

  60. Ursini F, Maiorino M, Brigelius-Flohé R, et al. Diversity of glutathione peroxidases. Methods. Enzymology 1995;252:38–53.

    Article  CAS  Google Scholar 

  61. Walczak R, Westhof E, Carbon P, et al. A novel structural motif in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA 1996;2:367–79.

    PubMed  CAS  Google Scholar 

  62. Ward CJ, Crocker J, Chan SJ, et al. Changes in the expression of elastase and cathepsin B with differentiation of U937 promonocytes by GMCSF. Biochem Biophys Res Commun 1990;167:659–64.

    Article  PubMed  CAS  Google Scholar 

  63. Wieles B, Ottenhoff THM, Steenwijk TM, et al. Increased intracellular survival of Mycobacterium smegmatis containing the Mycobacterium leprae thioredoxin-thioredoxin reductase gene. Infect Immun 1997;65:2537–41.

    PubMed  CAS  Google Scholar 

  64. Wu X, Bishopric NH, Discher DJ, et al. Physical and functional sensitivity of zinc finger transcription factors to redox change. Molec Cell Biol 1996;16:1035–46.

    PubMed  CAS  Google Scholar 

  65. Zhang Z, Hillas PJ, Ortiz de Montellano PR. Reduction of peroxides and dinitrobenzenes by mycobacterium tuberculosis thioredoxin and thioredoxin reductase. Arch Biochem Biophys 1999;363:19–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Jakob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert-Dümig, R., Seufert, J., Schneider, D. et al. Expression von Selenoproteinen in Monozyten und Makrophagen — Implikationen für das Immunsystem. Med Klin 94 (Suppl 3), 29–34 (1999). https://doi.org/10.1007/BF03042187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03042187

Schlüsselwörter

Key Words

Navigation