Skip to main content
Log in

The application of PET to quality assurance of heavy-ion tumor therapy

  • Accelerator and Medical Physics
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Summary

At the new heavy ion tumor therapy facility of the Gesellschaft für Schwerionenforschung at Darmstadt positron emission tomography (PET) has been implemented for in-beam and in-situ therapy control, i. e. during the tumor irradiation. The components necessary for this dedicated PET-imaging and their integration into the framework of therapy planning and quality assurance of heavy ion cancer treatments are presented. Results of the first application of this PET-method to patient treatments are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Enghardt W, Fromm WD, Geissel H, et al. The spatial distribution of positron emitting nuclei generated by relativistic light ion beams in organic matter. Phys Med Biol 1992;44:2127–31.

    Article  Google Scholar 

  2. Haberer Th, Becher W, Schardt D, et al. Magnetic scanning system for heavy ion therapy. Nucl Instr and Meth 1993;A330:296–305.

    Article  Google Scholar 

  3. Hasch BG. Die physikalischen Grundlagen einer Verifikation des Bestrahlungsplanes in der Schwerionen-Tumortherapie mit der Positronen-Emissions-Tomographie. PhD Thesis, Dresden University of Technology, 1996.

  4. Jäkel O, Krämer M. Treatment planning for heavy ion irradiation. In: Abstracts of the 6th Workshop on Heavy Charged Particles in Biology and Medicine, 1997, GSI-Report 97-09: F1–F2.

  5. Kawachi K, Kanai T, Ymada S, et al. Developments of irradiation technique at HIMAC. Oral presentation at the Annual Meeting of the European Hadron Therapy Group, Innsbruck, Austria, Oct. 1997.

  6. Kraft G. The radiobiological and physical basis for radiotherapy with protons and heavy ions. Strahlenther Onkol 1990;166:10–3.

    PubMed  CAS  Google Scholar 

  7. Llacer J. Positron emission medical measurements with accelerated radioactive beams. Nucl Sci Appl 1988;3:111–31.

    CAS  Google Scholar 

  8. Pawelke J, Enghardt W, Haberer Th, et al. In-beam PET imaging for the control of heavy-ion tumor therapy. IEEE Trans Nucl Sci 1997;44:1492–8.

    Article  CAS  Google Scholar 

  9. Rogers JG, Taylor AJ, Rahimi MF, et al. An improved multicrystal 2-D BGO detector for PET. IEEE Trans Nucl Sci 1992;39:1063–8.

    Article  CAS  Google Scholar 

  10. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1982;2:113–22.

    Article  Google Scholar 

  11. Wienhard K, Eriksson L, Grootoonk S, et al. Performance evaluation of the positron scanner ECAT EXACT. J Comput Assist Tomogr 1992;16: 804–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Enghardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enghardt, W., Debus, J., Haberer, T. et al. The application of PET to quality assurance of heavy-ion tumor therapy. Strahlenther Onkol 175 (Suppl 2), 33–36 (1999). https://doi.org/10.1007/BF03038884

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03038884

Key Words

Navigation