Skip to main content
Log in

Surface plasmon resonance for the analysis of β-amyloid interactions and fibril formation in alzheimer’s disease research

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Epub ahead of print: December 2004 Alzheimer’s disease (AD) is a neurodegenerative disorder characterised by the accumulation of amyloid deposits, the major component of which is a 4 kDa polypeptide known as β-amyloid protein (Aβ). Identifying the mechanism underlying the formation of Aβ and the pathways that lead to its toxicity is crucial to understanding the mechanism of AD and addressing the urgent need for new and effective treatments for AD. The accumulation of Aβ is the result of a complex interplay between genetic and environmental factors that affect the generation, clearance and aggregation of the peptide. Because of its propensity to aggregate, Aβ builds up in the brain and assembles into amyloid fibrils, ultimately creating amyloid plaques (APs) and cerebral amyloid angiopathy (CAA). Aβ has been shown to interact with a number of intracellular and extracellular molecules, but the relative contribution of these interactions to the toxicity of Aβ is not well understood. A critical step in characterising the importance of these interactions is the ability to measure both the affinity and kinetics of these interactions. Surface plasmon resonance (SPR) spectroscopy has become a widely used technique to study molecular interactions such as antibody-antigen, DNA-DNA, DNA-protein, protein-protein, receptor-ligand and peptide- and protein-membrane interactions. This article reviews the application of SPR to the study of the molecular interactions associated with AD and how this information enhances our molecular understanding of Aβ-mediated toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariga T and RK Yu (1999) GM1 inhibits amyloid beta-proteininduced cytokine release.Neurochem. Res. 24, 219–226.

    Article  PubMed  CAS  Google Scholar 

  • Ariga T, K Kobayashi, A Hasegawa, M Kiso, H Ishida and T Miyatake (2001) Characterization of high-affinity binding between gangliosides and amyloid beta-protein.Arch. Biochem. Biophys. 388, 225–230.

    Article  PubMed  CAS  Google Scholar 

  • Barbier A, A Visvikis, F Mathieu, L Diez, LM Havekes and G Siest (1997) Characterization of three human apolipoprotein E iso-forms (E2, E3 and E4) expressed in Escherichia coli.Eur. J. Clin. Chem. Clin. Biochem. 35, 581–589.

    PubMed  CAS  Google Scholar 

  • Baumann MH, J Kallijarvi, H Lankinen, C Soto and M Haltia (2000) Apolipoprotein E includes a binding site which is recognized by several amyloidogenic polypeptides.Biochem. J. 349, 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Bohrmann B, L Tjernberg, P Kuner, S Poli, B Levet-Trafit, J Naslund, G Richards, W Huber, H Dobeli and C Nordstedt (1999) Endogenous proteins controlling amyloid beta-peptide polymerization. Possible implications for beta-amyloid formation in the central nervous system and in peripheral tissues.J. Biol. Chem. 274, 15990–15995.

    Article  PubMed  CAS  Google Scholar 

  • Bohrmann B, M Adrian, J Dubochet, P Kuner, F Muller, W Huber, C Nordstedt and H Dobeli (2000) Self-assembly of beta-amyloid 42 is retarded by small molecular ligands at the stage of structural intermediates.J. Struct. Biol. 130, 232–246.

    Article  PubMed  CAS  Google Scholar 

  • Cairo CW, A Strzelec, RM Murphy and LL Kiessling (2002) Affinity-based inhibition of beta-amyloid toxicity.Biochemistry 41, 8620–8629.

    Article  PubMed  CAS  Google Scholar 

  • Cannon MJ, AD Williams, R Wetzel and DG Myszka (2004) Kinetic analysis of beta-amyloid fibril elongation.Anal. Biochem. 328, 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Cooper MA (2002) Optical biosensors in drug discovery.Nat. Rev. DrugDiscov. 1, 515–528.

    Article  CAS  Google Scholar 

  • Cooper MA, A Hansson, S Lofas and DH Williams (2000) A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors.Anal. Biochem. 277, 196–205.

    Article  PubMed  CAS  Google Scholar 

  • Corder EH, AM Saunders, WJ Strittmatter, DE Schmechel, PC Gaskell, GW Small, AD Roses, JL Haines and MA Pericak-Vance (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families.Science 261, 921–923.

    Article  PubMed  CAS  Google Scholar 

  • Dong J, CA Peters-Libeu, KH Weisgraber, BW Segelke, B Rupp, I Capila, MJ Hernaiz, LA LeBrun and RJ Linhardt (2001) Interaction of the N-terminal domain of apolipoprotein E4 with heparin.Biochemistry 40, 2826–2834.

    Article  PubMed  CAS  Google Scholar 

  • Esler WP, ER Stimson, JM Jennings, HV Vinters, JR Ghilardi, JP Lee, PW Mantyh and JE Maggio (2000) Alzheimer’s disease amyloid propagation by a template-dependent dock-lock mechanism.Biochemistry 39, 6288–6295.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, K Ono, M Yamada and H Naiki (2002) Kinetic modeling and determination of reaction constants of Alzheimer’s beta-amyloid fibril extension and dissociation using surface plasmon resonance.Biochemistry 41, 13489–13498.

    Article  PubMed  CAS  Google Scholar 

  • Hernaiz MJ, LA LeBrun, Y Wu, JW Sen, RJ Linhardt and NY Heegaard (2002) Characterization of heparin binding by a peptide from amyloid P component using capillary electrophoresis, surface plasmon resonance and isothermal titration calorimetry.Eur. J. Biochem. 269, 2860–2867.

    Article  PubMed  CAS  Google Scholar 

  • Hertel C, E Terzi, N Hauser, R Jakob-Rotne, J Seelig and JA Kemp (1997) Inhibition of the electrostatic interaction between betaamyloid peptide and membranes prevents beta-amyloid-induced toxicity.Proc. Natl. Acad. Sci. USA 94, 9412–9416.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann J, CU Pietrzik, MP Kummer, C Twiesselmann, C Bauer and V Herzog (1999) Binding and selective detection of the secretory N-terminal domain of the alzheimer amyloid precursor protein on cell surfaces.J. Histochem. Cytochem. 47, 373–3820.

    PubMed  CAS  Google Scholar 

  • Jarrett JT and PT Lansbury Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie?Cell 73, 1055–1058.

    Article  PubMed  CAS  Google Scholar 

  • Jarvik GP, EM Wijsman, WA Kukull, GD Schellenberg, C Yu and EB Larson (1995) Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer’s disease: a case-control study.Neurology 45, 1092–1096.

    PubMed  CAS  Google Scholar 

  • Kremer JJ and RM Murphy (2003) Kinetics of adsorption of betaamyloid peptide Aβ(1-40) to lipid bilayers.J. Biochem. Biophys. Methods 57, 159–169.

    Article  PubMed  CAS  Google Scholar 

  • Lashuel HA, D Hartley, BM Petre, T Walz and PT Lansbury Jr (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations.Nature 418, 291.

    Article  PubMed  CAS  Google Scholar 

  • Maggio JE, ER Stimson, JR Ghilardi, CJ Allen, CE Dahl, DC Whitcomb, SR Vigna, HV Vinters, ME Labenski and PW Mantyh (1992) Reversiblein vitro growth of Alzheimer disease beta-amyloid plaques by deposition of labeled amyloid peptide.Proc. Natl. Acad. Sci. USA 89, 5462–5466.

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease.Nature 430, 631–639.

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP and SL Chan (2003) Good and bad amyloid antibodies.Science 301, 1847–1849.

    Article  PubMed  CAS  Google Scholar 

  • Monsonego A and HL Weiner (2003) Immunotherapeutic approaches to Alzheimer’s disease.Science 302, 834–838.

    Article  PubMed  CAS  Google Scholar 

  • Mozsolits H and MI Aguilar (2002) Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions.Biopolymers 66, 3–18.

    Article  PubMed  CAS  Google Scholar 

  • Mozsolits H, WG Thomas and ML Aguilar (2003) Surface plasmon resonance spectroscopy in the study of membrane-mediated cell signalling.J. Pept. Sci. 9, 77–89.

    Article  PubMed  CAS  Google Scholar 

  • Multhaup G, AI Bush, P Pollwein and CL Masters (1994) Interaction between the zinc (II) and the heparin binding site of the Alzheimer’s disease βA4 amyloid precursor protein (APP).FEBS Lett. 355, 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Multhaup G, H Mechler and CL Masters (1995) Characterization of the high affinity heparin binding site of the Alzheimer’s disease βA4 amyloid precursor protein (APP) and its enhancement by zinc(II) Interaction between the zinc (II) and the heparin binding site of the Alzheimer’s disease βA4 amyloid precursor protein (APP).J. Mol. Recognit. 8, 247–257.

    Article  PubMed  CAS  Google Scholar 

  • Myszka DG, SJ Wood and AL Biere (1999) Analysis of fibril elongation using surface plasmon resonance biosensors.Methods Enzymol. 309, 386–402.

    Article  PubMed  CAS  Google Scholar 

  • Notkola IL, R Sulkava, J Pekkanen, T Erkinjuntti, C Ehnholm, P Kivinen, J Tuomilehto and A Nissinen (1998) Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s disease.Neuroepidemiology 17, 14–20.

    Article  PubMed  CAS  Google Scholar 

  • Nunan J and DH Small (2002) Proteolytic processing of the amyloid-beta protein precursor of Alzheimer’s disease.Essays Biochem. 38, 37–49.

    PubMed  CAS  Google Scholar 

  • Plant AL, M Brigham-Burke, EC Petrella and DJ O’Shannessy (1995) Phospholipid/alkanethiol bilayers for cell-surface receptor studies by surface plasmon resonance.Anal. Biochem. 226, 342–348.

    Article  PubMed  CAS  Google Scholar 

  • Redondo C, AM Damas, A Olofsson, E Lundgren and MJ Saraiva (2000) Search for intermediate structures in transthyretin fibrillogenesis: soluble tetrameric Tyr78Phe TTR expresses a specific epitope present only in amyloid fibrils.J. Mol. Biol. 304, 461–470.

    Article  PubMed  CAS  Google Scholar 

  • Rich RL and DG Myszka (2000) Advances in surface plasmon resonance biosensor analysis.Curr. Opin. Biotechnol. 11, 54–61.

    Article  PubMed  CAS  Google Scholar 

  • Scheuner D, C Eckman, M Jensen, X Song, M Citron, N Suzuki, TD Bird, J Hardy, M Hutton, W Kukull, E Larson, E Levy-Lahad, M Viitanen, E Peskind, P Poorkaj, G Schellenberg, R Tanzi, W Wasco, L Lannfelt, D Selkoe and S Younkin (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increasedin vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease.Nat. Med. 2, 864–870.

    Article  PubMed  CAS  Google Scholar 

  • Shuvaev W and G Siest (1996) Interaction between human amphipathic apolipoproteins and amyloid beta-peptide: surface plasmon resonance studies.FEBS Lett. 383, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Shuvaev W and G Siest (2000) Heparin specifically inhibits binding of apolipoprotein E to amyloid beta-peptide.Neurosci. Lett. 280, 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Small DH and CA McLean (1999) Alzheimer’s disease and the amyloid β protein: What is the role of amyloid?J. Neurochem. 73, 443–449.

    Article  PubMed  CAS  Google Scholar 

  • Small DH, SS Mok and JC Bornstein (2001) Alzheimer’s disease and Aβ toxicity: from top to bottom.Nat. Rev. Neurosci. 2, 595–598.

    Article  PubMed  CAS  Google Scholar 

  • Subasinghe S, S Unabia, CJ Barrow, SS Mok, MI Aguilar and DH Small (2003) Cholesterol is necessary both for the toxic effect of Aβ peptides on vascular smooth muscle cells and for Aβ binding to vascular smooth muscle cell membranes.J. Neurochem. 84, 471–479.

    Article  PubMed  CAS  Google Scholar 

  • Tanzi RE and L Bertram(2001) New frontiers in Alzheimer’s disease genetics.Neuron 32, 181–184.

    Article  PubMed  CAS  Google Scholar 

  • Terrettaz S, T Storaet al. (1993) Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectrosopy and surface plasmon spectroscopy.Langmuir 9, 1361–1369.

    Article  CAS  Google Scholar 

  • Tjernberg LO, J Naslund, F Lindqvist, J Johansson, AR Karlstrom, J Thyberg, L Terenius and C Nordstedt (1996) Arrest of β-amyloid fibril formation by a pentapeptide ligand.J. Biol. Chem. 271, 8545–8548.

    Article  PubMed  CAS  Google Scholar 

  • Valdes-Gonzalez T, J Inagawa and T Ido (2001) Neuropeptides interact with glycolipid receptors: a surface plasmon resonance study.Peptides 22, 1099–1106.

    Article  PubMed  CAS  Google Scholar 

  • Vorum H, C Jacobsen and B Honore (2000) Calumenin interacts with serum amyloid P component.FEBS Lett. 465, 129–134.

    Article  PubMed  CAS  Google Scholar 

  • Wirths O, G Multhaup, C Czech, N Feldmann, V Blanchard, G Tremp, K Beyreuther, L Pradier and TA Bayer (2002) Intraneuronal APP/Aβ trafficking and plaque formation in betaamyloid precursor protein and presenilin-1 transgenic mice.Brain Pathol. 12, 275–286.

    PubMed  CAS  Google Scholar 

  • Wood SJ, W Chanet al. (1996) An ApoE-Aβ inhibition complex in Aβ fibril extension.Chem. Biol. 3, 949–956.

    Article  PubMed  CAS  Google Scholar 

  • Yankner BA, LR Dawes, S Fisher, L Villa-Komaroff, ML Oster-Granite and RL Neve (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease.Science 245, 417–420.

    Article  PubMed  CAS  Google Scholar 

  • Zambrano N,JD Buxbaum, G Minopoli, F Fiore, P De Candia, S De Renzis, R Faraonio, S Sabo, J Cheetham, M Sudol and T Russo (1997) Interaction of the phosphotyrosine interaction/ phosphotyrosine binding-related domains of Fe65 with wild-type and mutant Alzheimer’s β-amyloid precursor proteins.J. Biol. Chem. 272, 6399–6405.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L,CA Booth and P Stroeve (2000) Phosphatidylserine/cholesterol bilayers supported on a polycation/alkylthiol layer pair.J. Colloid Interface Sci. 228, 82–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie -Isabel Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar, M.I., Small, D.H. Surface plasmon resonance for the analysis of β-amyloid interactions and fibril formation in alzheimer’s disease research. neurotox res 7, 17–27 (2005). https://doi.org/10.1007/BF03033773

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033773

Keywords

Navigation