Skip to main content
Log in

Gene-environment interplay in schizopsychotic disorders

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Genetic studies have sought to identify subtypes or endophenotypes of schizophrenia in an effort to improve the reliability of findings. A number of chromosomal regions or genes have now been shown to have had replicated linkage to schizophrenia susceptibility. Molecules involved in neurodevelopment or neurotransmitter function are coded by many of the genes that have been implicated in schizophrenia. Studies of neurotransmitter function have identified, among others, a possible role for GABA, glutamate and dopamine in animal models of schizophrenia. GABA neurons that co-express the calcium binding protein parvalbumin have been implicated as have glutamatergic metabotropic receptors and dopamine D3 receptors. Stress influences glutamate and dopamine providing another environmental factor that may interact with the influence of genes on neurotransmitter function. Neurotransmitter interactions include influences on signaling molecules and these too have been implicated in forms of learning thought to be affected in schizophrenia. Results continue to unravel the interplay of genes and environment in the etiology of schizophrenia and other psychotic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbarian S, JJ Kim, SG Potkin, JO Hagman, A Tafazzoli, WE Bunney Jr and EG Jones (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in pre-frontal cortex of schizophrenics.Arch. Gen. Psychiatr. 52, 258–266.

    PubMed  CAS  Google Scholar 

  • Allen RM and SJ Young (1978) Phencyclidine-induced psychosis.Am. J. Psychiatr. 135, 1081–1084.

    PubMed  CAS  Google Scholar 

  • Andreasen NC, S Arndt, R Alliger, D Miller and M Flaum (1995) Symptoms of schizophrenia, methods, meanings and mechanisms.Arch. Gen. Psychiatr. 52, 341–351.

    PubMed  CAS  Google Scholar 

  • Arranz M, K Collier, M Sodhi, D Ball, G Roberts, J Price, P Sham and R Kerwin (1995) Association between clozapine response and allelic variation in 5-HT2A receptor genes.Lancet 346, 281–282.

    Article  PubMed  CAS  Google Scholar 

  • Bagley J and B Moghaddam (1997) Temporal dynamics of gluta-mate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam.Neuroscience 77, 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Beasley CL and GP Reynolds (1997) Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics.Schizophr. Res. 24, 349–355.

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, J McSparren, ED Bird, JP SanGiovanni and SL Vincent (1991) Deficits in small interneurons in prefrontal and cingulate corticies of schizophrenic and schizoaffective patients.Arch. Gen. Psychiatr. 48, 996–1001.

    PubMed  CAS  Google Scholar 

  • Benes FM, EW Kwok, SL Vincent and MS Todtenkopf (1998) A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives.Biol. Psychiatr. 44, 88–97.

    Article  CAS  Google Scholar 

  • Beninger RJ (1983) The role of dopamine in locomotor activity and learning.Brain Res. Rev. 6, 173–196.

    Article  CAS  Google Scholar 

  • Beninger RJ and TV Gerdjikov (2004) The role of signaling molecules in reward-related incentive learning.Neurotoxicity Res. 6, 91–104.

    Google Scholar 

  • Beninger RJ and BL Hahn (1983) Pimozide blocks establishment but not expression of amphetamine-produced environment-specific conditioning.Science 220, 1304–1306.

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC and TE Robinson (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?Brain Res. Rev. 28, 309–369.

    Article  PubMed  CAS  Google Scholar 

  • Blackwood DHR and WJ Muir (2004) Clinical phenotypes associated with DISC1, a candidate gene for schizophrenia.Neurotoxicity Res. 6, 35–42.

    CAS  Google Scholar 

  • Blackwood DH, A Fordyce, MT Walker, DM St. Clair, DJ Porteous and WJ Muir (2001) Schizophrenia and affective disorders -cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes, clinical and P300 findings in a family.Am. J. Hum. Genet. 69, 428–433.

    Article  PubMed  CAS  Google Scholar 

  • Blackwood DHR, DM St. Clair, WJ Muir and JC Duffy (1991) Auditory P300 and eye tracking dysfunction in schizophrenic pedigrees.Arch. Gen. Psychiatr. 48, 899–909.

    PubMed  CAS  Google Scholar 

  • Brody SA and MA Geyer (2004) Interactions of the mGluR5 gene with breeding and maternal factors on startle and prepulse inhibition in mice.Neurotoxicity Res. 6, 79–90.

    Google Scholar 

  • Cannon TD, TG van Erp and DC Glahn (2002) Elucidating continuities and discontinuities between schizotypy ansd schizophrenia in the nervous system.Schizophr. Res. 54, 151–156.

    Article  PubMed  Google Scholar 

  • Celada P, MV Puig, R Martin-Ruiz, JM Casanovas and F Artigas (2002) Control of the serotonergic system by the medial pre-frontal cortex: potential role in the etiology of PTSD and depressive disorders.Neurotoxicity Res. 4, 409–419.

    Article  CAS  Google Scholar 

  • Coyle JT, G Tsai and D Goff (2003) Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia.Ann. NY Acad. Sci. 1003, 318–327.

    Article  PubMed  CAS  Google Scholar 

  • Devon RS and DJ Porteous (1997) Physical mapping of a glutamate receptor gene in relation to a balanced translocation associated with schizophrenia in a large Scottish family.Psychiatr. Genetics 7, 165–169.

    CAS  Google Scholar 

  • Eysenck HJ and MW Eysenck (1985)Personality and Individual Differences. A Natural Science Approach (Plenum Press: New York, NY).

    Google Scholar 

  • Fanous AH and KS Kendler (2004) The genetic relationship of personality to major depression and schizophrenia.Neurotoxicity Res. 6, 43–50.

    Google Scholar 

  • Fanous AH, CO Gardner, CA Prescott, R Cancro and KS Kendler (2002) Nerotocism, major depression ands gender: a population-based twin study.Psychol. Med. 32, 710–728.

    Article  Google Scholar 

  • Freeman AS and BS Bunney (1984) The effects of phencyclidine andN-allynomethazocine on midbrain dopamine neuronal activity.Eur. J. Pharmacol. 104, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • French ED, C Pilapil and R Quirion (1985) Phencyclidine binding sites in the nucleus accumbens and phencyclidine-induced hyperactivity are decreased following lesions of the mesolimbic dopamine system.Eur. J. Pharmacol. 116, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, NR Swerdlow, RS Mansbach and DL Braff (1990) Startle response models of sensorimotor gating and habituation deficits in schizophrenia.Brain Res. Bull. 25, 485–498.

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, K Krebs-Thomson, DL Braff and NR Swerdlow (2001) Pharmacological studies of prepulse inhibition models of senso-rimotor gating deficits in schizophrenia: a decade in review.Psychopharmacology 156, 117–154.

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC and SR Zukin (1991) Recent advances in the phencycli-dine model of schizophrenia.Am. J. Psychiatry 148, 1301–1308.

    PubMed  CAS  Google Scholar 

  • Jentsch JD and RH Roth (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia.Neuropsychopharmacol.20, 201–225.

    Article  CAS  Google Scholar 

  • Jentsch JD, A Tran, A Le, KD Youngren and RH Roth (1997) Sub-chronic phencyclidine administration reduces mesoprefrontal dopamine utilization and impairs prefrontal cortical-dependent cognition in the rat.Neuropsychopharmacology 17, 92–99.

    Article  PubMed  CAS  Google Scholar 

  • Kandel E (2001) The molecular biology of memory storage: a dialogue between genes and synapses.Science 294, 1030–1038.

    Article  PubMed  CAS  Google Scholar 

  • Kapur S (2003) Psychosis as a state of aberant salience: a framework linking biology, phenomonology, and pharmacology in schizophrenia.Am. J. Psychiatry 160, 13–23.

    Article  PubMed  Google Scholar 

  • Kelley AE and KC Berridge (2002) The neuroscience of natural rewards: relevance to addictive drugs.[comment].J. Neurosci. 22, 3306–3311.

    PubMed  CAS  Google Scholar 

  • Kendler KS and SR Diehl (1993) The genetics of schizophrenia: a current, genetic-epidemiologic perspective. Schizophr. Bull.19, 261–285.

    PubMed  CAS  Google Scholar 

  • Kendler KS, M McGuire, AM Gruenberg, A O’Hare, M Spellman and D Walsh (1993) The Roscommon family study. III. Schizophrenia-related personality disorders in relatives.Arch. Gen. Psychiatr. 50, 781–788.

    PubMed  CAS  Google Scholar 

  • Klein DF and J Stewart (2004) Genes and environment: nosology and psychiatry.Neurotoxicity Res. 6, 11–16.

    Google Scholar 

  • Konradi C and S Heckers (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment.Pharmacol. Ther. 97, 153–179.

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, DC D’Souza, D Mathalon, E Perry, A Belger and R Hoffman (2003) NMDA receptor antagonist effects, cortical glu-tamatergic function, and schizophrenia: toward a paradigm shift in medication development.Psychopharmacology 169, 215–233.

    Article  PubMed  CAS  Google Scholar 

  • Lecrubier Y (2003) A partial D3 receptor agonist in schizophrenia.Eur. Neuropsychopharmacol. 13 Suppl. 4, S167-S168.

    Article  Google Scholar 

  • Leriche L, J Diaz and P Sokoloff (2004) Dopamine and glutamate dysfunctions in schizophrenia: role of dopamine D3 receptor.Neurotoxicity Res. 6, 63–72.

    CAS  Google Scholar 

  • Liddle PF (1987) The symptoms of chronic schizophrenia. A re-examination of the positive-negative dichotomy.Br. J. Psychiatry 151, 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Liebowitz MR, FM Quitkin, JW Stewart, PJ McGrath, WM Harrison, JS Markowitz, JG Rabkin, E Tricamo, DM Goetz and DF Klein (1988) Antidepressant specificity in atypical depression.Arch. Gen. Psychiatr. 45, 129–137.

    PubMed  CAS  Google Scholar 

  • Lipska BK and DR Weinberger (2002) A neurodevelopmental model of schizophrenia: neonatal disconnection of the hippocampus.Neurotoxicity Res. 4, 469–475.

    Article  Google Scholar 

  • Lipska BK, DN Lerman, ZZ Khaing, CS Weickert and DR Weinberger (2003) Gene expression in dopamine and GABA systems in an animal model of schizophrenia: effects of antipsy-chotic drugs.Eur. J. Neurosci. 18, 391–402.

    Article  PubMed  Google Scholar 

  • Lowy M, L Gault and B Yammamato (1993) Adrenolectomy attenuates stress induced elevation in extracellular glutamate concentration in hippocampus.J. Neurosci. 61, 1957–1960.

    CAS  Google Scholar 

  • Luby ED, JS Gottlieb and BD Cohen (1962) Model psychoses and schizophrenia.Am. J. Psychiatr. 119, 61–65.

    Google Scholar 

  • Malhotra AK (2004) Candidate gene studies of antipsychotic drug efficacy and drug-induced weight gain.Neurotoxicity Res. 6, 51–56.

    Google Scholar 

  • Malhotra AK, RW Buchanan, S Kim, L Kestler, A Breier, D Pickar and D Goldman (1999) Allelic variation in the promoter region of the dopamine D2 receptor gene and clozapine response.Schizophr. Res. 36, 92–93.

    Google Scholar 

  • Mansbach RS and MA Geyer (1989) Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat.Neuropsychopharmacology 2, 299–308.

    Article  PubMed  CAS  Google Scholar 

  • Mata I, MJ Arranz, T Lai, D Mancama, J Arrondo, M Beperet, R Villavicencio, J Munro, S Osborne and RW Kerwin (2002) The serotonergic system influences individual’s response to risperi-done.Am. J. Med. Genet. 114, 728.

    Google Scholar 

  • Miller R, JR Wickens and RJ Beninger (1990) Dopamine D-1 and D-2 receptors in relation to reward and performance: a case for the D-1 receptor as a primary site of therapeutic action of neu-roleptic drugs.Prog. Neurobiol. 34, 143–183.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi K, A Honda, K Baba, M Taniguchi, K Oono, T Fujita, S Kuroda, T Katayama and M Tohyama (2003) Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth.Mol. Psychiatr. 8, 685–694.

    Article  CAS  Google Scholar 

  • Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia.J. Neurosci. 60, 1650–1657.

    CAS  Google Scholar 

  • Moghaddam B (2003) Bringing order to the glutamate chaos in schizophrenia.Neuron 40, 881–884.

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B and M Jackson (2004) Effect of stress on prefrontal cortex function.Neurotoxicity Res. 6, 73–78.

    Google Scholar 

  • Morris JA, G Kandpal, L Ma and P Austin (2003) DISC1 (Disrupted in Schizophrenia 1) is a centrosome-associated protein that interacts with MAPT1A, MIPT3, ATF4/5 and NUDEL, regulation and loss of interaction with mutation.Hum. Mol. Genet.12, 1591–1608.

    Article  PubMed  CAS  Google Scholar 

  • Ohnuma T, SJ Augood, H Arai, PJ McKenna and PC Emson (1998) Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia.Mol. Brain Res. 56, 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Ozeki Y, T Tomodo, J Kleiderlein, A Kamiya, L Bord, K Fujii, M Okawa, N Yamada, ME Hatten, SH Snyder, CA Ross and A Sawa (2003) Disrupted-in-schizophrenia-1 (DISC-1), mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth.Proc. Natl. Acad. Sci. USA 100, 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Palomo T, RM Kostrzewa, T Archer and RJ Beninger (2002) Neurodevelopmental liabilities in schizophrenia and affective disorders.Neurotoxicity Res. 4, 397–408.

    Article  CAS  Google Scholar 

  • Pin JP and R Duvoisin (1995) Review: neurotransmitter receptors I: the metabotropic glutamate receptors: structure and functions.Neuropharmacology 14, 1–26.

    Article  Google Scholar 

  • Powell SB and MA Geyer (2002) Developmental markers of psychiatric disorders as identified by sensorimotor gating.Neurotoxicity Res. 4, 489–502.

    Article  Google Scholar 

  • Quitkin FM, JW Stewart, PJ McGrath, MR Liebowitz, WM Harrison, E Tricamo, DF Klein, JG Rabkin, JS Markowitz and SG Wager (1988) Phenelzine versus imipramine in the treatment of probable atypical depression: defining syndrome boundaries of selective MAOI responders.Am. J. Psychiatr. 145, 306–311.

    PubMed  CAS  Google Scholar 

  • Quitkin FM, PJ McGrath, JW Stewart, W Harrison, E Tricamo, SG Wager, K Ocepek-Welikson, E Nunes, JG Rabkin and DF Klein (1990) Atypical depression, panic attacks, and response to imipramine and phenelzine: a replication.Arch. Gen. Psychiatr. 47, 935–941.

    PubMed  CAS  Google Scholar 

  • Rankin CH (2002) From gene to identified neuron to behaviour inCaenorhabditis elegans.Nature Rev. Genetics 3, 622–630.

    CAS  Google Scholar 

  • Reynolds GP, ZJ Zhang and CL Beasley (2001) Neurochemical correlates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding protein immunoreactivity.Brain Res. Bull. 55, 13–18.

    Article  Google Scholar 

  • Reynolds GP, ZJ Zhang and XB Zhang (2002) Association of antipsychotic drug-induced weight gain with a 5-HT2C receptor polymorphism.Lancet 359, 2086–2087.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GP, ZJ Zhang and XB Zhang (2003) Ploymorphism of the promotor region of the serotonin 5-HT(2C) receptor gene and clozapine-induced weight gain.Am. J. Psychiatr. 160, 677–679.

    Article  PubMed  Google Scholar 

  • Reynolds GP, Z Abdul-Monim, JC Neill and ZJ Zhang (2004) Calcium binding protein markers of GABA deficits in schizophrenia — post mortem studies and animal models.Neurotoxicity Res. 6, 57–62.

    Google Scholar 

  • Riley BP (2004) Linkage studies of schizophrenia.Neurotoxicity Res. 6, 17–34.

    Article  Google Scholar 

  • Schwartz JC, J Diaz, C Pilon and P Sokoloff (2000) Possible implications of the dopamine D(3) receptor in schizophrenia and in antipsychotic drug actions.Brain Res. Rev. 31, 277–278.

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, T Lee, M Chau-Wong and K Wong (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors.Nature 261, 717–719.

    Article  PubMed  CAS  Google Scholar 

  • Shafer M, D Rujescu, I Giegling, A Gunterman, A Erfurth, B Bondy and H Moller (2001) Association of the short-term response to haloperidol treatment with a polymorphism in the dopamine D2 receptor gene.Am. J. Psychiatr. 158, 802–804.

    Article  Google Scholar 

  • Snyder SH (1976) The dopamine hypothesis of schizophrenia: focus on the dopamine receptor.Am. J. Psychiatr. 133, 197–202.

    PubMed  CAS  Google Scholar 

  • St. Clair D, D Blackwood, W Muir, A Carothers, M Walker, G Spowart, C Gosden and HJ Evans (1990) Association within a family of a balanced autosomal translocation with major mental illness.Lancet 336, 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Stewart JW, FM Quitkin, PJ McGrath and GE Bruder (1999) Do tricyclic responders have different brain laterality?J. Abnormal Psychol. 108, 707–710.

    Article  CAS  Google Scholar 

  • Sutton MA and RJ Beninger (1999) Psychopharmacology of conditioned reward: evidence for a rewarding signal at D1-like dopamine receptors.Psychopharmacology (Berl.) 144, 95–110.

    Article  CAS  Google Scholar 

  • Suzuki A, K Mihara, T Kondo, O Tanaka, U Nagashima, K Otani and S Kaneko (2000) The relationship between dopamine D2 receptor polymorphism at the Taq1 locus and the therapeutic response to nemonapride, a selective dopamine antagonist, in schizophrenic patients.Pharmacogenetics 10, 335–341.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, T Kondo, K Mihara, H Yasui-Furukori, M Ishida, H Furukori, S Kaneko, Y Inoue and K Otani (2001) The -141C Ins/Del polymorphism in the dopamine D2 receptor gene promoter region is associated with anxiolytic and antidepressive effects during treatment with dopamine antagonists in schizophrenic patients.Pharmacogenetics 11, 545–550.

    Article  PubMed  CAS  Google Scholar 

  • Van Praag HM (2002) Crossroads of corticotropin releasing hormone, corticosteroids and monoamines. About a biological interface between stress and depression.Neurotoxicity Res. 4, 531–555.

    Article  CAS  Google Scholar 

  • Waddell S and WG Quinn (2001) Flies, genes, and learning.Annu. Rev. Neurosci. 24, 1283–1309.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR (1995) Neurodevelopmental perspectives in schizophrenia, InPsychopharmacology: The Fourth Generation of Progress (Bloom FE and DJ Kupfer, Eds.) (Raven Press: New York, NY), pp 1171–1183.

    Google Scholar 

  • Wickens J (1990) Striatal dopamine in motor activation and reward-mediated learning: steps towards a unifying model.J. Neural Transm. 80, 9–31.

    Article  CAS  Google Scholar 

  • Yerkes RM and JD Dodson (1908) The relation of strength of stimulus to rapidity of habit-formation.J. Comp. Neurol. Psychol. 18, 459–482.

    Article  Google Scholar 

  • Zhang ZJ and GP Reynolds (2002) A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus of schizophrenia.Schizophr. Res. 55, 1–10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Beninger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palomo, T., Archer, T., Kostrzewa, R.M. et al. Gene-environment interplay in schizopsychotic disorders. neurotox res 6, 1–9 (2004). https://doi.org/10.1007/BF03033291

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033291

Keywords

Navigation