Skip to main content
Log in

Coupled reductions in brain oxidative phosphorylation and synaptic function can be quantified and staged in the course of Alzheimer disease

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

In vivo, post-mortem and biopsy data suggest that coupled deelines occur in brain synaptic activity and brain energy consumption during the evolution of Alzheimer disease. In the first stage of these declines, changes in synaptic structure and function reduce neuronal energy demand and lead to potentially reversible downregulation of oxidative phosphorylation (OXPHOS) within neuronal mitochondria. At this stage, measuring brain glucose metabolism or brain blood flow in patients, using positron emission tomography (PET), shows that the brain can be almost normally activated in response to stimulation. Thus, therapy at this stage should be designed to re-establish synaptic integrity or prevent its further deterioration. As disease progresses, neurofibrillary tangles with abnormally phosphorylated tau protein accumulate within neuronal cytoplasm, to the point that they co-opt the nonphosphorylated tau necessary for axonal transport of mitochondria between the cell nucleus and the synapse. In this second stage, severe energy depletion and other pathological processes associated with irreversibly downregulated OXPHOS lead to cell death, and the brain cannot normally respond to functional stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama H, S Barger, S Barnum, B Bradt, J Bauer, GM Cole, NR Cooper, P Eikelenboom, M Emmerling, BL Fiebich, CE Finch, S Frautschy, WS Griffin, H Hampel, M Hull, G Landreth, L Lue, R Mrak, IR Mackenzie, PL McGeer, MK O'Banion, J Pachter, G Pasinetti, C Plata-Salaman, J Rogers, R Rydel, Y Shen, W Streit, R Strohmeyer, I Tooyoma, FL Van Muiswinkel, R Weerhuis, D Walker, S Webster, B Wegrzyniak, G Wenk and T Wyss-Coray (2000) Inflammation and Alzheimer's disease.Neurobiol. Aging 21, 383–421.

    Article  PubMed  CAS  Google Scholar 

  • Attardi G and G Schatz (1988) Biogenesis of mitochondria.Annu. Rev. Cell Biol. 4, 289–333.

    Article  PubMed  CAS  Google Scholar 

  • Barger SW and AS Basile (2001) Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function.J. Neurochem. 76, 846–854.

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (1998) Mitochondrial dysfunction in neurodegenerative diseases.Biochim. Biophys. Acta 1366, 211–223.

    Article  PubMed  CAS  Google Scholar 

  • Bookheimer SY, MH Strojwas, MS Cohen, AM Saunders, MA Pericak-Vance, JC Mazziotta, and GW Small (2000) Patterns of brain activation in people at risk for Alzheimer's disease.N. Engl. J. Med. 343, 450–456.

    Article  PubMed  CAS  Google Scholar 

  • Braak H and E Braak (1998) Evolution of neuronal changes in the course of Alzheimer's disease.J. Neural Transm. Suppl. 53, 127–140.

    PubMed  CAS  Google Scholar 

  • Brodal A (1981)Neurological Anatomy in Relation to Clinical Medicine, 3rd Ed. (Oxford University Press, Oxford).

    Google Scholar 

  • Burggren AC, GW Small, FW Sabb and SY Bookheimer (2002) Specificity of brain activation patterns in people at genetic risk for Alzheimer disease.Am. J. Geriatr. Psychiatry 10, 44–51.

    PubMed  Google Scholar 

  • Calingasan NY, K Uchida and GE Gibson (1999) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer's disease.J. Neurochem. 72, 751–756.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran K, J Stoll, DR Brady and SI Rapoport (1992) Localization of cytochrome oxidase (COX) activity and COX mRNA in the hippocampus and entorhinal cortex in the monkey brain: correlation with specific neuronal pathways.Brain Res. 579, 333–336.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran K, J Stoll, SI Rapoport and DR Brady (1993) Localization of cytochrome oxidase (COX) activity and COX mRNA in the perirhinal and superior temporal sulci of the monkey brain.Brain Res. 606, 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran K, T Giordano, DR Brady, J Stoll, LJ Martin and SI Rapoport (1994) Impairment of mitochondrial cytochrome oxidase gene expression in Alzheimer disease.Brain Res. Mol. Brain Res. 24 (S-1), 336–340.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran K, K Hatanpää, DR Brady and SI Rapoport (1996) Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer's disease.Exp. Neurol. 142, 80–88.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran K, K Hatanpää, SI Rapoport and DR Brady (1997) Decreased expression of nuclear and mitochondrial DNA-encoded genes of oxidative phosphorylation in association neocortex of Alzheimer disease.Brain Res. Mol. Brain Res. 44, 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran K, K Hatanpää, DR Brady, J Stoll and SI Rapoport (1998) Downregulation of oxidative phosphorylation in Alzheimer disease: loss of cytochrome oxidase subunit mRNA in the hippocampus and entorhinal cortex.Brain Res. 796, 13–19.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran K and SI Rapoport (unpublished observations).

  • Chrzanowska-Lightowlers ZM, T Preiss and RN Lightowlers (1994) Inhibition of mitochondrial protein synthesis promotes increased stability of nuclear-encoded respiratory gene transcripts.J. Biol. Chem. 269, 27322–27328.

    PubMed  CAS  Google Scholar 

  • Davies CA, DMA Mann, PQ Sumpter and PO Yates (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease.J. Neurol. Sci. 78, 151–164.

    Article  PubMed  CAS  Google Scholar 

  • DeCarli CS, JR Atack, MJ Ball, JA Kaye, CL Grady, P Fewster, KD Pettigrew, SI Rapoport and MB Schapiro (1992) Post-mortem regional neurofibrillary tangle densities but not senile plaque densities are related to regional cerebral metabolic rates for glucose during life in Alzheimer's disease patients.Neurodegeneration 1, 113–121.

    Google Scholar 

  • DeCarli C, DG Murphy, JA Gillette, JV Haxby, D Teichberg, MB Schapiro and B Horwitz (1994) Lack of age-related differences in temporal lobe volume of very healthy adults.Am. J. Neuroradiol. 15, 689–696.

    PubMed  CAS  Google Scholar 

  • DeKosky ST and SW Scheff (1990) Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity.Ann. Neurol. 27, 457–464.

    Article  PubMed  CAS  Google Scholar 

  • Folstein MF, SE Folstein and PR McHugh (1975) Mini Mental State. A practical method for grading the cognitive state of patients for the clinician.J. Psychiatr. Res. 12, 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama R, K Hatanpää, SI Rapoport and K Chandrasekaran (1996) Gene expression of ND4, a subunit of complex I of oxidative phosphorylation in mitochondria, is decreased in temporal cortex of brains of Alzheimer's disease patients.Brain Res. 713, 290–293.

    Article  PubMed  CAS  Google Scholar 

  • Gaines G, C Rossi and G Attardi (1987) Markedly different ATP requirements for rRNA synthesis and mtDNA light strand transcription versus mRNA synthesis in isolated human mitochondria.J. Biol. Chem. 262, 1907–1915.

    PubMed  CAS  Google Scholar 

  • Gelfand R and G Attardi (1981) Synthesis and turnover of mitochondrial ribonucleic acid in HeLa cells: the mature ribosomal and messenger ribonucleic acid species are metabolically unstable.Mol. Cell. Biol. 1, 497–511.

    PubMed  CAS  Google Scholar 

  • Gong Y, L Chang, KL Viola, PN Lacor, MP Lambert, CE Finch, GA Krafft and WL Klein (2003) Alzheimer's disease-affected brain: presence of oligomeric Abeta ligands (ADDLs) suggests a molecular basis for reversible memory loss.Proc. Natl. Acad. Sci. USA 100, 10417–10422.

    Article  PubMed  CAS  Google Scholar 

  • Grady CL (2002) Age-related differences in face processing: a meta-analysis of three functional neuroimaging experiments.Can. J. Exp. Psychol. 56, 208–220.

    PubMed  Google Scholar 

  • Grady CL, B Sonies, J Haxby, J Luxenberg, R Friedland and S Rapoport (1988) Cerebral metabolic asymmetries predict decline in language performance in dementia of the Alzheimer type (DAT).J. Clin. Exp. Neuropsychol. 10, 39.

    Google Scholar 

  • Grady CL, JV Haxby, B Horwitz, J Gillette, JA Salerno, A Gonzalez-Aviles, RE Carson, P Herscovitch, MB Schapiro and SI Rapoport (1993) Activation of cerebral blood flow during a visuoperceptual task in patients with Alzheimer-type dementia.Neurobiol. Aging 14, 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, WF Maragos, RL Albin, JB Penney and AB Young (1988) Glutamate transmission and toxicity in Alzheimer's disease.Prog. Neuropsychopharmacol. Biol. Psychiatry 12, 421–430.

    Article  PubMed  CAS  Google Scholar 

  • Greene JG and JT Greenamyre (1996) Bioenergetics and glutamate excitotoxicity.Prog. Neurobiol. 48, 613–634.

    Article  PubMed  CAS  Google Scholar 

  • Hake AM and MR Farlow (2001) New concepts in the drug therapy of Alzheimer's disease.Expert Opin. Pharmacother. 2, 1975–1983.

    Article  PubMed  CAS  Google Scholar 

  • Hatanpää K, DR Brady, J Stoll, SI Rapoport and K Chandrasekaran (1996) Neuronal activity and early neurofibrillary tangles in Alzheimer's disease.Ann. Neurol. 40, 411–420.

    Article  PubMed  Google Scholar 

  • Hatanpää K, K Chandrasekaran, D Brady and SI Rapoport (1998) No association between Alzheimer plaques and decreased levels of cytochrome oxidase subunit mRNA, a marker of neuronal energy metabolism.Brain Res. Mol. Brain Res. 59, 13–21.

    Article  PubMed  Google Scholar 

  • Hatanpää K, KR Isaacs, T Shirao, DR Brady and SI Rapoport (1999) Loss of proteins regulating synaptic plasticity in normal aging of the human brain and in Alzheimer disease.J. Neuropathol. Exp. Neurol. 58, 637–643.

    Article  PubMed  Google Scholar 

  • Haxby JV, R Duara, CL Grady, NR Cutler and SI Rapoport (1985) Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer's disease.J. Cereb. Blood Flow Metab. 5, 193–200.

    PubMed  CAS  Google Scholar 

  • Hevner RF and MTT Wong-Riley (1991) Neuronal expression of nuclear and mitochondrial genes for cytochrome oxidase (CO) subunits analyzed byin situ hybridization: comparison with CO activity and protein.J. Neurosci. 11, 1942–1958.

    PubMed  CAS  Google Scholar 

  • Hevner RF and MTT Wong-Riley (1993) Mitochondrial and nuclear gene expression for cytochrome oxidase subunits are disproportionately regulated by functional activity in neurons.J. Neurosci. 13, 1805–1819.

    PubMed  CAS  Google Scholar 

  • Hevner RF, RS Duff and MT Wong-Riley (1992) Coordination of ATP production and consumption in brain: Parallel regulation of cytochrome oxidase and Na+, K+-ATPase.Neurosci. Lett. 138, 188–192.

    Article  PubMed  CAS  Google Scholar 

  • Ibanez V, P Pietrini, GE Alexander, ML Furey, D Teichberg, JC Rajapakse, SI Rapoport, MB Schapiro and B Horwitz (1998) Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer's disease.Neurology 50, 1585–1593.

    PubMed  CAS  Google Scholar 

  • Iqbal K, C Alonso Adel, E El-Akkad, CX Gong, N Haque, S Khatoon, I Tsujio and I Grundke-Iqbal (2002) Pharmacological targets to inhibit Alzheimer neurofibrillary degeneration.J. Neural Transm. Suppl. 62, 309–319.

    PubMed  CAS  Google Scholar 

  • Irizarry MC, F Soriano, M McNamara, KJ Page, D Schenk, D Games and BT Hyman (1997) Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse.J. Neurosci. 17, 7053–7059.

    PubMed  CAS  Google Scholar 

  • Katzman R (1976) The prevalence and malignancy of Alzheimer disease: a major killer.Arch. Neurol. 33, 217–218.

    PubMed  CAS  Google Scholar 

  • Kennedy AM, RSJ Frackowiak, SK Newman, PM Bloomfield, J Seaward, P Roques, G Lewington, VJ Cunningham and MN Rossor (1995) Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer's disease.Neurosci. Lett. 186, 17–20.

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, MB Schapiro, C Grady, JV Haxby, E Wagner, JA Salerno, RP Friedland and SI Rapoport (1991) High-resolution PET studies in Alzheimer's disease.Neuropsychopharmacology 4, 35–46.

    PubMed  CAS  Google Scholar 

  • Lehninger AL, DL Nelson and MM Cox (1993)Principles of Biochemistry, 2nd Ed., Chapter 15, pp. 446–448; Chapter 20, pp. 669–683 (Worth Press: New York).

    Google Scholar 

  • Lewis DA, MJ Campbell, RD Terry and JH Morrison (1987) Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer's disease: a quantitative study of visual and auditory cortices.J. Neurosci. 7, 1799–1808.

    PubMed  CAS  Google Scholar 

  • Liu LI, SI Rapoport and K Chandrasekaran (1999) Regulation of mitochondrial gene expression in differentiated PC12 cells.Ann. NY Acad. Sci. 893, 341–344.

    Article  PubMed  CAS  Google Scholar 

  • Mann DMA, B Marcyniuk, PO Yates, D Neary and JS Snowden (1988) The progression of the pathological changes of Alzheimer's disease in frontal and temporal neocortex examined both at biopsy and at autopsy.Neuropathol. Appl. Neurobiol. 14, 177–195.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E and E Rockenstein (2000) Genetically altered transgenic models of Alzheimer's disease.J. Neurol. Transm. Suppl. 59, 175–183.

    CAS  Google Scholar 

  • Mattson MP, DS Gary, SL Chan, W Duan, SW Barger and AS Basile (2001) Perturbed endoplasmic reticulum function, synaptic apoptosis and the pathogenesis of Alzheimer's disease.Biochem. Soc. Symp. 76, 151–162.

    Google Scholar 

  • Mecocci P, U MarGarvey and MF Beal (1994) Oxidative damage to mitochondria DNA is increased in Alzheimer disease.Ann. Neurol. 36, 747–751.

    Article  PubMed  CAS  Google Scholar 

  • Mentis MJ, B Horwitz, CL Grady, GE Alexander, JW VanMeter, JM Maisog, P Pietrini, MB Schapiro and SI Rapoport (1996) Visual cortical dysfunction in Alzheimer's disease evaluated with a temporally graded “stress test” during PET.Am. J. Psychiatry 153, 32–40.

    PubMed  CAS  Google Scholar 

  • Mentis MJ, GE Alexander, CL Grady, B Horwitz, J Krasuski, P Pietrini, T Strassburger, H Hampel, MB Schapiro and SI Rapoport (1997) Frequency variation of a pattern-flash visual stimulus during PET differentially activates brain from striate through frontal cortex.Neuroimage 5, 116–128.

    Article  PubMed  CAS  Google Scholar 

  • Mentis MJ, GE Alexander, J Krasuski, P Pietrini, ML Furey, MB Schapiro and SI Rapoport (1988) Increasing required neural response to expose abnormal brain function in mild versus moderate or severe Alzheimer's disease: PET study using parametric visual stimulation.Am. J. Psychiatry 155, 785–794.

    Google Scholar 

  • Mentis MJ, T Sunderland, J Lai, C Connolly, J Krasuski, B Levine, J Friz, S Sobti, M Schapiro and SI Rapoport (2001) Muscarinic versus nicotinic modulation of a visual task. A PET study using drug probes.Neuropsychopharmacology 25, 555–564.

    Article  PubMed  CAS  Google Scholar 

  • Micol V, P Fernandez-Silva and G Attardi (1997) Functional analysis ofin vivo andin organello footprinting of HeLa cell mitochondrial DNA in relationship to ATP and ethidium bromide effects on transcription.J. Biol. Chem. 272, 18896–18904.

    Article  PubMed  CAS  Google Scholar 

  • Montoya J, T Christianson, D Levens, M Rabinowitz and G Attardi (1982) Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA.Proc. Natl. Acad. Sci. USA 79, 7195–7199.

    Article  PubMed  CAS  Google Scholar 

  • Mrak RE and WS Griffin (2001) Interleukin-1, neuroinflammation, and Alzheimer's disease.Neurobiol. Aging 22, 903–908.

    Article  PubMed  CAS  Google Scholar 

  • Nagy Z, MM Esiri, M LeGris and PM Matthews (1999) Mitochondrial enzyme expression in the hippocampus in relation to Alzheimer-type pathology.Acta Neuropathol. (Berl.) 97, 346–354.

    Article  CAS  Google Scholar 

  • Parker Jr WD, J Parks, CM Filley and BK Kleinschmidt-DeMasters (1994) Electron transport chain defects in Alzheimer's disease brain.Neurology 44, 1090–1096.

    PubMed  Google Scholar 

  • Pellmar TC, DA Schauer and GH Zeman (1990) Time-and dosedependent changes in neuronal activity produced by X radiation in brain slices.Radiation Res. 122, 209–214.

    Article  PubMed  CAS  Google Scholar 

  • Peterson E (2003)Mild Cognitive Impairment: Aging to Alzheimer's Disease (Oxford University Press: New York), p. 269.

    Google Scholar 

  • Pietrini P, GE Alexander, ML Furey, A Dani, MJ Mentis, B Horwitz, M Guazzelli, MB Shapiro and SI Rapoport (2000) Cerebral metabolic response to passive audiovisual stimulation in patients with Alzheimer's disease and healthy volunteers assessed by PET.J. Nucl. Med. 41, 575–583.

    PubMed  CAS  Google Scholar 

  • Purdon AD and SI Rapoport (1998) Energy requirements for two aspects of phospholipid metabolism in mammalian brain.Biochem. J. 335, 313–318.

    PubMed  CAS  Google Scholar 

  • Rapoport SI (1990) Integrated phylogeny of the primate brain, with special reference to humans and their diseases.Brain Res. Rev. 15, 267–294.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport SI (1991) Positron emission tomography in Alzheimer's disease in relation to disease pathogenesis: a critical review.Cerebrovasc. Brain Metab. Rev. 3, 297–335.

    PubMed  CAS  Google Scholar 

  • Rapoport SI (1995) Anatomic and functional brain imaging in Alzheimer's disease, In:Psychopharmacology: the Fourth Generation of Progress, Bloom FE and DJ Kupfer, Eds. (Raven: New York), pp. 1401–1415.

    Google Scholar 

  • Rapoport SI (1997) Deux stades, réversible et irréversible, de l'insuffisance fonctionnelle dans le cerveau Alzheimerien, In:De la Neurophysiologie à la Maladie D'Alzheimer: Symposium en Hommage à Yvon Lamour, Y. Christien, Eds. (Solal: Marseille), pp. 165–172.

    Google Scholar 

  • Rapoport SI and CL Grady (1993) Parametricin vivo brain imaging during activation to examine pathological mechanisms of functional failure in Alzheimer disease.Int. J. Neurosci. 70, 39–56.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport SI, K Hatanpää, DR Brady and K Chandrasekaran (1996) Brain energy metabolism, cognitive function and down-regulated oxidative phosphorylation in Alzheimer disease.Neurodegeneration 5, 473–476.

    Article  PubMed  CAS  Google Scholar 

  • Reiman EM, RJ Caselli, LS Yun, K Chen, D Bandy, S Minoshima, SN Thibodeau and D Osbome (1996) Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E.N. Engl. J. Med. 334, 752–758.

    Article  PubMed  CAS  Google Scholar 

  • Reivich M (1974) Blood flow metabolism couple in brain.Res. Publ. Assoc. Res. Nerv. Ment. Dis. 53, 125–140.

    PubMed  CAS  Google Scholar 

  • Rojas-Fernandez CH, M Chen and HL Fernandez (2002) Implications of amyloid precursor protein and subsequent beta-amyloid production to the pharmacotherapy of Alzheimer's disease.Pharmacotherapy 22, 1547–1563.

    Article  PubMed  CAS  Google Scholar 

  • Roy CS and CS Sherrington (1890) On the regulation of the blood supply of the brain.J. Physiol. (Lond.) 11, 85–105.

    CAS  Google Scholar 

  • Rutten BP, O Wirths, WD Van de Berg, SF Lichtenthaler, J Vehoff, HW Steinbusch, H Korr, K Beyreuther, G Multhaup, TA Bayer and C Schmitz (2003) No alterations of hippocampal neuronal number and synaptic bouton number in a transgenic mouse model expressing the beta-cleaved C-terminal APP fragment.Neurobiol. Dis. 12, 110–120.

    Article  PubMed  CAS  Google Scholar 

  • Sato M, T Kawarabayashi, M Shoji, T Kobayashi, N Tada, E Matsubara and S Hirai (1997) Neurodegeneration and gliosis in transgenic mice overexpressing a carboxy-terminal fragment of Alzheimer amyloid-beta protein precursor.Dement. Geriatr. Cogn. Disord. 8, 296–307.

    Article  PubMed  CAS  Google Scholar 

  • Scheff SW, ST DeKosky and DA Price (1990) Quantitative assessment of cortical synaptic density in Alzheimer's disease.Neurobiol. Aging 11, 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Scheff SW, DL Sparks and DA Price (1996) Quantitative assessment of synaptic density in the outer molecular layer of the hippocampal dentate gyrus in Alzheimer's disease.Dementia 7, 226–232.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2002) Alzheimer's disease is a synaptic failure.Science 298, 789–791.

    Article  PubMed  CAS  Google Scholar 

  • Sheetz MP, ER Steuer and TA Schroer (1989) The mechanism and regulation of fast axonal transport.Trends Neurosci. 12, 474–478.

    Article  PubMed  CAS  Google Scholar 

  • Sims NR, JM Finegan, JP Blass, DM Bowen and D Neary (1987) Mitochondrial function in brain tissue in primary degenerative dementia.Brain Res. 436, 30–38.

    Article  PubMed  CAS  Google Scholar 

  • Small GW, JC Mazziotta, MT Collins, LR Baxter, ME Phelps, MA Mandelkern, A Kaplan, A La Rue, CF Adamson, L Chang, BH Guze, EH Corder, AM Saunders, JL Haines, MA Pericak-Vance and AD Roses (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease.JAMA 273, 942–947.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L (1999) Energetics of functional activation in neural tissues.Neurochem. Res. 24, 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen L, M Ekstrand, JP Silva, E Lindqvist, B Xu, P Rustin, L Olson and NG Larsson (2001) Late-onset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice.J. Neurosci. 21, 8082–8090.

    PubMed  CAS  Google Scholar 

  • Talairach J and P Tournoux (1988) Co-planar stereotaxic atlas of the human brain (Thieme Medical Publishers, Inc.: New York).

    Google Scholar 

  • Tamataini M, K Chandrasekaran and CR Filburn (1987) unpublished observations.

  • Terry RD, E Masliah, DP Salmon, N Butters, R DeTeresa, R Hill, LA Hansen and R Katzman (1991) Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment.Ann. Neurol. 30, 572–580.

    Article  PubMed  CAS  Google Scholar 

  • VanMeter JW, JM Maisog, TA Zeffiro, M Hallett, P Herscovitch and SI Rapoport (1995) Parametric analysis of functional neuroimages: application to a variable-rate motor task.Neuroimage 2, 272–383.

    Article  Google Scholar 

  • Wallace DC (1999) Mitochondrial diseases in man and mouse.Science 283, 1482–1488.

    Article  PubMed  CAS  Google Scholar 

  • Wang SS, A Becerra-Arteaga and TA Good (2002) Development of a novel diffusion-based method to estimate the size of the aggregated Abeta species responsible for neurotoxicity.Biotechnol. Bioeng. 80, 50–59.

    Article  PubMed  CAS  Google Scholar 

  • Wong-Riley MTT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity.Trends Neurosci. 12, 94–101.

    Article  PubMed  CAS  Google Scholar 

  • Yaffe MP (1999) The machinery of mitochondrial inheritance and behavior.Science 283, 1493–1497.

    Article  PubMed  CAS  Google Scholar 

  • Yao PJ, M Zhu, EI Pyun, AI Brooks, S Therianos, VE Meyers and PD Coleman (2003) Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer's disease.Neurobiol. Dis. 12, 97–109.

    Article  PubMed  CAS  Google Scholar 

  • Zhang C and MT Wong-Riley (2000) Synthesis and degradation of cytochrome oxidase subunit mRNAs in neurons: differential bigenomic regulation by neuronal activity.J. Neurosci. Res. 60, 338–344.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley I. Rapoport.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapoport, S.I. Coupled reductions in brain oxidative phosphorylation and synaptic function can be quantified and staged in the course of Alzheimer disease. neurotox res 5, 385–397 (2003). https://doi.org/10.1007/BF03033167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033167

Keywords

Navigation