Skip to main content
Log in

Human umbilical cord blood (HUCB) cells for central nervous system repair

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Cellular therapy is a compelling and potential treatment for certain neurological and neurodegenerative diseases as well as a viable treatment for acute injury to the spinal cord and brain. The hematopoietic system offers alternative sources for stem cells compared to those of fetal or embryonic origin. Bone marrow stromal and umbilical cord cells have been used in pre-clinical models of brain injury, directed to differentiate into neural phenotypes, and have been related to functional recovery after engraftment in central nervous system (CNS) injury models. This paper reviews the advantages, utilization and progress of human umbilical cord blood (HUCB) cells in the neural cell transplantation and repair field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bicknese AR, HS Goodwin, CO Quinn and CD Verneake (2002) Human umbilical cord blood cells can be induced to express markers for neurons and glia.Cell Transplantation 11(3), 261–264.

    PubMed  Google Scholar 

  • Blau HM, TR Brazelton and JM Weimann (2001) The evolving concept of a stem cell: entity or function?Cell 105, 829–841.

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer HE (1995) Growth factors and cord blood stem and progenitor cells.Immunol. Invest. 24, 391–402.

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer HE (1996) Primitive hematopoietic stem and progenitor cells in human umbilical cord blood: an alternative source of transplantable cells.Cancer Treat. Res. 84, 139–148.

    PubMed  CAS  Google Scholar 

  • Broxmeyer HE (1998)Cellular Characteristics of Cord Blood and Cord Blood Transplantation (AABB Press, Bethesda, MD).

    Google Scholar 

  • Broxmeyer HE and S Cooper (1997) High-efficiency recovery of immature haematopoietic progenitor cells with extensive proliferative capacity from human cord blood cryopreserved for 10 years.Clin. Exp. Immunol. 107 Suppl. 1, 45–53.

    PubMed  Google Scholar 

  • Broxmeyer HE, GW Douglas, G Hangoc, S Cooper, J Bard, D English, M Arny, L Thomas and EA Boyse (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells.Proc. Natl. Acad. Sci. USA 86(10), 3828–3832.

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer HE, E Gluckman, A Auerbach, GW Douglas, H Friedman, S Cooper, G Hangoc, J Kurtzberg, J Bard and EA Boyse (1990) Human umbilical cord blood: a clinically useful source of transplantable hematopoietic stem/pro genitor cells.Int. J. Cell Cloning 8 (Suppl. 1), 76–89; discussion pp. 89–91.

    PubMed  Google Scholar 

  • Broxmeyer HE, J Kurtzberg, E Gluckman, AD Auerbach, G Douglas, S Cooper, JH Falkenburg, J Bard and EA Boyse (1991) Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation.Blood Cells 17(2), 313–329.

    PubMed  CAS  Google Scholar 

  • Broxmeyer HE, S Cooper, M Yoder and G Hangoc (1992a) Human umbilical cord blood as a source of transplantable hematopoietic stem and progenitor cells.Curr. Top. Microbiol. Immunol. 177, 195–204.

    PubMed  CAS  Google Scholar 

  • Broxmeyer HE, G Hangoc, S Cooper, RC Ribeiro, V Graves, M Yoder, J Wagner, S Vadhan-Raj, L Benninger, P Rubinsteinet al. (1992b) Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults.Proc. Natl. Acad. Sci. USA,89(9), 4109–4113.

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer HE, EF Srour, G Hangoc, S Cooper, SA Anderson and DM Bodine (2003) High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years.Proc. Natl. Acad. Sci. USA 100, 645–650.

    Article  PubMed  CAS  Google Scholar 

  • Buzanska L, EK Machaj, B Zablocka, Z Pojda and K Domanska-Janik (2002) Human cord blood-derived cells attain neuronal and glial featuresin vitro.J. Cell Sci. 115(Pt 10), 2131–2138.

    PubMed  CAS  Google Scholar 

  • Caims J (1975) Mutation selection and the natural history of cancer.Nature,255(5505), 197–200.

    Article  Google Scholar 

  • Cardoso AA, ML Li, P Batard, A Hatzfeld, EL Brown, JP Levesque, H Sookdeo, B Panterne, P Sansilvestri, SC Clarket al. (1993a) Release from quiescence of CD34+ CD38− human umbilical cord blood cells reveals their potentiality to engraft adults.Proc. Natl. Acad. Sci. USA 90(18), 8707–8711.

    Article  PubMed  CAS  Google Scholar 

  • Cardoso AA, ML Li, P Batard, P Sansilvestri, A Hatzfeld, JP Levesque, JS Lebkowski and J Hatzfeld (1993b) Human umbilical cord blood CD34+ cell purification with high yield of early progenitors.J. Hematother. 2(2), 275–279.

    PubMed  CAS  Google Scholar 

  • Carpenter MK, MS Inokuma, J Denham, T Mujtaba, CP Chiu and MS Rao (2001) Enrichment of neurons and neural precursors from human embryonic stem cells.Exp. Neurol. 172, 383–397.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, PR Sanberg, Y Li, L Wang, M Lu, AE Willing, J Sanchez-Ramos and M Chopp (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats.Stroke 32(11), 2682–2688.

    Article  PubMed  CAS  Google Scholar 

  • Clinical Trials (2003) http://www.clinicaltrials.gov.

  • Cohen RI, R McKay and G Almazan (1999) Cyclic AMP regulates PDGF-stimulated signal transduction and differentiation of an immortalized optic-nerve-derived cell line.J. Exp. Biol. 202 (Pt. 4): 461–473.

    PubMed  CAS  Google Scholar 

  • Dietrich J, M Noble and M Mayer-Proschel (2002) Characterization of A2B5+ glial precursor cells from cryopreserved human fetal brain progenitor cells.Glia 40, 65–77.

    Article  PubMed  Google Scholar 

  • Eaton MJ and SR Whittemore (1996) Autocrine BDNF secretion enhances the survival and serotonergic differentiation of raphe neuronal precursor cells grafted into the adult rat CNS.Exp. Neurol. 140, 105–114.

    Article  PubMed  CAS  Google Scholar 

  • Erices A, P Conget and JJ Minguell (2000). Mesenchymal progenitor cells in human umbilical cord blood.Br. J. Haematol. 109(1), 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Gage FH (1998) Cell therapy.Nature 392, 18–24.

    PubMed  CAS  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells.Science 287, 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  • Garbuzova-Davis S, A Willing, T Zigova, S Saporta, EB Justen, JC Lane, JE Hudson, N Chen, CD Hart and PR Sanberg (2003) Intravenous administration of human umbilical cord blood cells in a mouse model of ALS: distribution, migration, and differentation.J. Hematother. and Stem Cell Res. 12(3), 255–270.

    Article  CAS  Google Scholar 

  • Ghen M (2003) Institute of Cellular Medicine http://www.alshucb.org

  • Gluckman E (2001) Hematopoietic Stem-Cell Transplants Using Umbilical-Cord Blood.N. Engl. J. Med. 344, 1860–1861.

    Article  PubMed  CAS  Google Scholar 

  • Gluckman E, HA Broxmeyer, AD Auerbach, HS Friedman, GW Douglas, A Devergie, H Esperou, D Thierry, G, Socie, P Lehnet al. (1989) Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling.N. Engl. J. Med. 321(17), 1174–1178.

    Article  PubMed  CAS  Google Scholar 

  • Gluckman E, V Rocha, A Boyer-Chammard, F Locatelli, W Arcese, R Pasquini, J Ortega, G Souillet, E Ferreira, JP Laporte, M Fernandez and C Chastang (1997). Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group.N. Engl. J. Med. 337(6), 373–381.

    Article  PubMed  CAS  Google Scholar 

  • Gluckman E, V Rocha and C Chastang, (1999) Peripheral stem cells in bone marrow transplantation. Cord blood stem cell transplantation.Baillieres Best Pract. Res. Clin. Haematol. 12, 279–292.

    PubMed  CAS  Google Scholar 

  • Gritti A, P Frolichsthal-Schoeller, R Galli, EA Parati, L Cova, SF Pagano, CR Bjomson, and AL Vescovi (1999) Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain.J. Neurosci. 19, 3287–3297.

    PubMed  CAS  Google Scholar 

  • Ha Y, JU Choi, DH Yoon, DS Yeon, JJ Lee, HO Kim and YE Cho (2001) Neural phenotype expression of cultured human cord blood cellsin vitro.Neuro Report 12, 3523–3527.

    CAS  Google Scholar 

  • Hampton A (2002) Hope at Duke for children with Sanfilippo syndrome. www.abc11tv.com, Nov. 25.

  • Healy L, G May, K Gale, F Grosveld, M Greaves and T Enver (1995) The stern cell antigen CD34 functions as a regulator of hemopoietic cell adhesion.Proc. Natl. Acad. Sci. USA 92(26), 12240–12244.

    Article  PubMed  CAS  Google Scholar 

  • Hows JM, JC Marsh, BA Bradley, T Luft, L Coutinho, NG Testa and TM Dexter (1992) Human cord blood: a source of transplantable stem cells?Bone Marrow Transplant. 9 (Suppl. 1), 105–108.

    PubMed  Google Scholar 

  • Johansson CB, M Svensson, L Wallstedt, AM Janson and J Frisen (1999) Neural stem cells in the adult human brain.Exp. Cell Res. 253, 733–736.

    Article  PubMed  CAS  Google Scholar 

  • Kempuraj D, H Saito, A Kaneko, K Fukagawa, M Nakayama, H Toru, M Tomikawa, H Tachimoto, M Ebisawa, A Akasawa, T Miyagi, H Kimura, T Nakajima, K Tsuji and T Nakahata (1999) Characterization of mast cell-committed progenitors present in human umbilical cord blood.Blood 93(10), 3338–3346.

    PubMed  CAS  Google Scholar 

  • Kinmond S, TC Aitchison, BM Holland, JG Jones, TL Turner and CA Wardrop (1993) Umbilical cord clamping and preterm infants: a randomised trial.Bmj 306, 172–175.

    PubMed  CAS  Google Scholar 

  • Kondo T and M Raff (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells.Science 289, 1754–1757.

    Article  PubMed  CAS  Google Scholar 

  • Kukekov VG, ED Laywell, O Suslov, K Davies, B Scheffler, LB Thomas, TF O'Brien, M Kusakabe and DA Steindler (1999) Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain.Exp. Neurol. 156, 333–344.

    Article  PubMed  CAS  Google Scholar 

  • Lackie JM, JAT Dow and SE Blackshaw (1999)The Dictionary of Cell and Molecular Biology, 3rd Edition (Academic Press: San Diego).

    Google Scholar 

  • Lajtha LG (1979) Haemopoietic stem cells: concept and definitions.Blood Cells 5, 447–455.

    PubMed  CAS  Google Scholar 

  • Lajtha LG (1980) Bone marrow: the seedbed of blood, inBlood, Pure and Eloquent (Wintrobe MM, Ed.), McGraw Hill: New York.

    Google Scholar 

  • Lajtha LG (1983) Stem cell concepts, InStem Cells (Potten CS, Ed.), (Churchill Livingstone: New York).

    Google Scholar 

  • Laughlin MJ, J Barker, B Bambach, O Koc, DA Rizzieri, JE Wagner, SL Gerson, HM Lazarus, M Cairo, CE Stevens, P Rubinstein and J Kurtzberg (2001) Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors.New Engl. J. Med. 344, 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  • Lendahl U, LB Zimmerman and RD McKay (1990) CNS stem cells express a new class of intermediate filament protein.Cell 60, 585–595.

    Article  PubMed  CAS  Google Scholar 

  • Lobel DA, M Hadman, PR Sanberg and CV Borlongan (2003) Early intracerebral intra-arterial transplantation of human umbilical cord blood cells into an ischemic rat brain model.Exp. Neurol. 181(1), 97.

    Google Scholar 

  • Lu D, PR Sanberg, A Mahmood, Y Li, L Wang, J Sanchez-Ramos and M Chopp (2002) Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury.Cell Transplant. 11(3), 275–281.

    PubMed  Google Scholar 

  • Lu L, M Xiao, RN Shen, S Grigsby and HE Broxmeyer (1993) Enrichment, characterization, and responsiveness of single primitive CD34 human umbilical cord blood hematopoietic progenitors with high proliferative and replating potential.Blood 81(1), 41–48.

    PubMed  CAS  Google Scholar 

  • Lu L, RN Shen and HE Broxmeyer (1996) Stem cells from bone marrow, umbilical cord blood and peripheral blood for clinical application: current status and future application.Crit. Rev. Oncol. Hematol. 22(2), 61–78.

    Article  PubMed  CAS  Google Scholar 

  • Marshak DR, RL Gardner and D Gottlieb (2001)Stem Cell Biology (Vol. Monograph 40), Cold Spring Harbor Laboratory Press: Cold spring Harbor.

    Google Scholar 

  • Mayani H and PM Lansdorp (1998) Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells.Stem Cells 16, 153–165.

    PubMed  CAS  Google Scholar 

  • Metcalf D (1984)Clonal Culture of Hemopoietic Cells: Techniques and Applications (Elsevier Science Publishers BV: The Netherlands).

    Google Scholar 

  • Miraglia S, W Godfrey, AH Yin, K Atkins, R Warnke, JT Holden, RA Bray, EK Waller and DW Buck (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning.Blood 90, 5013–5021.

    PubMed  CAS  Google Scholar 

  • Mitsui H, T Furitsu, AM Dvorak, AM Irani, LB Schwartz, N Inagaki, M Takei, K Ishizaka, KM Zsebo, S Gilliset al. (1993) Development of human mast cells from umbilical cord blood cells by recombinant human and murine c-kit ligand.Proc. Natl. Acad. Sci. USA 90(2), 735–739.

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki T, N Moriya, T Nagaoki and N Taniguchi (1981) Maturation of B-cell differentiation ability and T-cell regulatory function in infancy and childhood.Immunol. Rev. 57, 61–87.

    Article  PubMed  CAS  Google Scholar 

  • Mokry J and S Nemecek (1998) Angiogenesis of extra- and intraembryonic blood vessels is associated with expression of nestin in endothelial cells.Folia Biol. (Praha)44, 155–161.

    CAS  Google Scholar 

  • Mujtaba T, DR Piper, A Kalyani, AK Groves, MT Lucero and MS Rao (1999) Lineage-restricted neural precursors can be isclated from both the mouse neural tube and cultured ES cells.Dev. Biol. 214, 113–127.

    Article  PubMed  CAS  Google Scholar 

  • Nagaoki T, T Miyawaki, R Ciorbaru, A Yachie, N Uwadana, N Moriya and N Taniguchi (1981) Maturation of B cell differentiation ability and T cell regulatory function during child growth assessed in a Nocardia water scluble mitogen-driven system.J. Immunol. 126, 2015–2019.

    PubMed  CAS  Google Scholar 

  • National Center for Farmworker Health, Inc (N.C.F.H.) (2002)National Vital Statistics Reports, Centers for Disease Control and Prevention.

  • National Institutes of Health (NIH), Department of Health and Human Services (2001) Stem Cells: Scientific Progress And Future Research Directions, www.nih.gov/news/stemcell/scireport.htm.

  • National Marrow Donor Program (NMDP) (2003) http://www.marrow.org/MEDICAI./cord_blood_transplantation_advanced.html

  • Newman MB, TB Freeman, CD Hart and PR Sanberg (2003) Neural stem cells for cellular therapy in humans, inNeural Stem Cells: Development and Transplantation (Bottenstein JE, Ed.), (Kluwer Academic: NY), pp. 385–418.

    Google Scholar 

  • Ogawa Y, K Sawamoto, T Miyata, S Miyao, M Watanabe, M Nakamura, BS Bregman, M Koike, Y Uchiyama, Y Toyama and H Okano (2002) Transplantation ofin vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats.J. Neurosci. Res. 69, 925–933.

    Article  PubMed  CAS  Google Scholar 

  • Orlic D, IJ Girard, SM Anderson, BK Do, NE Seidel, CT Jordan and DM Bodine (1997) Transduction efficiency of cell lines and hematopoietic stem cells correlates with retrovirus receptor mRNA levels.Stem Cells 15 (Suppl 1), 23–28; discussion, pp. 28–29.

    Article  PubMed  CAS  Google Scholar 

  • Palmer TD, EA Markakis, AR Willhoite, F Safar and FH Gage (1999) Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS.J. Neurosci. 19, 8487–8497.

    PubMed  CAS  Google Scholar 

  • Pan Y, H Zhang, R Bretton, WM Panneton and A Bicknese (2003) Intracarotid adiminstration of cultured non-hematopoietic human umbilical cord blood cells immediately after focal cerebral ischemia in rats.Exp. Neurol. 181(1), 102.

    Google Scholar 

  • Poltavtseva RA, MV Marey, MA Aleksandrova, AV Revishchin, LI Korochkin and GT Sukhikh (2002) Evaluation of progenitor cell cultures from human embryos for neurotransplantation.Brain Res. Dev. Brain Res. 134, 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Potgens AJ, M Bolte, B Huppertz, P Kaufmann and HG Frank (2001) Human trophoblast contains an intracellular protein reactive with an antibody against CD133-a novel marker for trophoblast.Placenta 22, 639–645.

    Article  PubMed  CAS  Google Scholar 

  • Potten CS (1983)Stem Cells: Their Identification and Characterisation (Churchill Livigstone: New York).

    Google Scholar 

  • Rao MS and MP Mattson (2001) Stem cells and aging: expanding the possibilities.Mech. Ageing Dev. 122(7), 713–734.

    Article  PubMed  CAS  Google Scholar 

  • Rappold I, BL Ziegler, I Kohler, S Marchetto, O Rosnet, D Birnbaum, PJ Simmons, AC Zannettino, B Hill, S Neu, W Knapp, R Alitalo, K Alitalo, A Ullrich, L Kanz and HJ Buhring (1997) Functional and phenotypic characterization of cord blood and bone marrow subsets expressing FLT3 (CD135) receptor tyrosine kinase.Blood 90, 111–125.

    PubMed  CAS  Google Scholar 

  • Redies C, U Lendahl and RD McKay (1991) Differentiation and heterogeneity in T-antigen immortalized precursor cell lines from mouse cerebellum.J. Neurosci. Res. 30, 601–615.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA and S Weiss (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.Science 255, 1707–1710.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ramos JR (2002) Neural cells derived from adult bone marrow and umbilical cord blood.J. Neurosci. Res. 69, 880–893.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ramos J, S Song, F Cardozo-Pelaez, C Hazzi, T Stedeford, A Willing, TB Freeman, S Saporta, W Janssen, N Patel, DR Cooper and PR Sanberg (2000) Adult bone marrow stromal cells differentiate into neural cellsin vitro.Exp. Neurol. 164, 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ramos JR, S Song, SG Kamath, T Zigova, A Willing, F Cardozo-Pelaez, T Stedeford, M Chopp and PR Sanberg (2001) Expression of neural markers in human umbilical cord blood.Exp. Neurol. 171(1), 109–115

    Article  PubMed  CAS  Google Scholar 

  • Sanz GF, S Saavedra, D Planelles, L Senent, J Cervera, E Barragan, C Jimenez, L Larrea, G Martin, J Martinez, I Jarque, F Moscardo, G Plume, R Andreu, AI Regadera, I Garcia, S Molla, P Solves, J de la Rubia, P Bolufer, L Benlloch, MA Soler, ML Marty and MA Sanz (2001) Standardized, unrelated donor cord blood transplantation in adults with hematologic malignancies.Blood 98, 2332–2338.

    Article  PubMed  CAS  Google Scholar 

  • Saporta S, JJ Kim, A Willing, ES Fu, CD Hart and PR Sanberg (2003) Human umbilical cord blood stem cells infusion in spinal cord injury.J. Hematother. and Stem Cell Res. 12(3), 271–278.

    Article  CAS  Google Scholar 

  • Shih CC, Y Weng, A Mamelak, T LeBon, MC Hu and SJ Forman (2001) Identification of a candidate human neurohematopoietic stem-cell population.Blood 98, 2412–2422.

    Article  PubMed  CAS  Google Scholar 

  • Shihabuddin LS, TD Palmer and FH Gage (1999) The search for neural progenitor cells: prospects for the therapy of neurodegenerative disease.Mol. Med. Today 5, 474–480.

    Article  PubMed  CAS  Google Scholar 

  • Steenblock DS (2003). http://www.strokedoctor.com/index.html.

  • Tamaki S, K Eckert, D He, R Sutton, M Doshe, G Jain, R Tushinski, M Reitsma, B Harris, A Tsukamoto, F Gage, I Weissman and N Uchida (2002) Engraftment of sorted/expanded human central nervous system stem cells from fetal brain.J. Neurosci. Res. 69, 976–986.

    Article  PubMed  CAS  Google Scholar 

  • Thomas JW, C LaMantia and T Magnuson (1998) X-ray-induced mutations in mouse embryonic stem cells.Proc. Natl. Acad. Sci. USA 95, 1114–1119.

    Article  PubMed  CAS  Google Scholar 

  • Thomson BG, KA Robertson, D Gowan, D Heilman, HE Broxmeyer, D Emanuel, P Kotylo, Z Brahmi and FO Smith (2000) Analysis of engraftment, graft-versus-host disease, and immune recovery following unrelated donor cord blood transplantation.Blood 96, 2703–2711.

    PubMed  CAS  Google Scholar 

  • Till JE and EA McCulloch (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells.Radiation Res. 14, 213.

    Article  PubMed  CAS  Google Scholar 

  • Traycoff CM, MR Abboud, J Laver, JE Brandt, R Hoffman, P Law, L Ishizawa, and EF Srour (1994) Evaluation of thein vitro behavior of phenotypically defined populations of umbilical cord blood hematopoietic progenitor cells.Exp. Hematol. 22, 215–222.

    PubMed  CAS  Google Scholar 

  • Tropepe V, S Hitoshi, C Sirard, TW Mak, J Rossant and D van der Kooy (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism.Neuron 30(1), 65–78.

    Article  PubMed  CAS  Google Scholar 

  • Uchida N, DW Buck, D He, MJ Reitsma, M Masek, TV Phan, AS Tsukamoto, FH Gage and IL Weissman (2000) Direct isolation of human central nervous system stem cells.Proc. Natl. Acad. Sci. USA 97, 14720–14725.

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y, T Miyawaki, H Seki, A Matsuda, K Taga and N Taniguchi (1985) Differential effects of recombinant human interferon-gamma and interleukin 2 on natural killer cell activity of peripheral blood in early human development.J. Immunol. 135, 180–184.

    PubMed  CAS  Google Scholar 

  • Vaziri H, W Dragowska, RC Allsopp, TE Thomas, CB Harley and PM Lansdorp (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age.Proc. Natl. Acad. Sci. USA 91(21), 9857–9860.

    Article  PubMed  CAS  Google Scholar 

  • Wagner JE, HE Broxmeyer, RL Byrd, B Zehnhauer, B Schmeckpeper, N Shah, C Griffin, PD Emanuel, KS Zuckerman, S Cooperet al. (1992) Transplantation of umbilical cord blood after myeloablative therapy: analysis of engraftment.Blood 79, 1874–1881.

    PubMed  CAS  Google Scholar 

  • Wagner JE, NA Kerman, M Steinbuch, HE Broxmeyer and E Gluckman (1995) Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and non-malignant disease.Lancet 346(8969), 214–219.

    Article  PubMed  CAS  Google Scholar 

  • Wardrop CA and BM Holland, (1995). Recombinant haemopoietic growth factors in the newborn-will they be useful?Eur. J. Pediatr. 154: S13–14

    Article  PubMed  CAS  Google Scholar 

  • Willing A, J Lixian, M Milliken, S Poulos, T Zigova, S Song, CD Hart, J Sanchez-Ramos and PR Sanberg (2003) Intavenous versus intrastriatal cor blood administration in a rodent model of stroke.Neurosci. Res. 73(3), 296–307.

    Article  CAS  Google Scholar 

  • Wilson CB, J Westall, L Johnston, DB Lewis, SK Dower and AR Alpert (1986) Decreased production of interferon-gamma by human neonatal cells. Intrinsic and regulatory deficiencies.J. Clin. Invest. 77, 860–867.

    Article  PubMed  CAS  Google Scholar 

  • Yin AH, S Miraglia, ED Zanjani, G Almeida-Porada, M Ogawa, AG Leary, J Olweus, J Kearney and DW Buck (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells.Blood 90(12), 5002–5012.

    PubMed  CAS  Google Scholar 

  • Zigova T, S Song, AE Willing, JE Hudson, MB Newman, S Saporta, J Sanchez-Ramos and PR Sanberg (2002) Human umbilical cord blood cells express neural antigens after transplantation into the developing rat brain.Cell Transplant. 11(3), 265–274.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, M.B., Davis, C.D., Kuzmin-Nichols, N. et al. Human umbilical cord blood (HUCB) cells for central nervous system repair. neurotox res 5, 355–368 (2003). https://doi.org/10.1007/BF03033155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033155

Keywords

Navigation