Skip to main content
Log in

Formulas for sums of powers of integers by functional equations

  • Survey Papers
  • Published:
aequationes mathematicae Aims and scope Submit manuscript

Abstract

This paper presents a direct and simple approach to obtaining the formulas forS k(n)= 1k + 2k + ... +n k wheren andk are nonnegative integers. A functional equation is written based on the functional properties ofS k (n) and several methods of solution are presented. These lead to several recurrence relations for the functions and a simple one-step differential-recurrence relation from which the polynomials can easily be computed successively. Arbitrary constants which arise are (almost) the Bernoulli numbers when evaluated and identities for these modified Bernoulli numbers are obtained. The functional equation for the formulas leads to another functional equation for the generating function for these formulas and this is used to obtain the generating functions for theS k 's and for the modified Bernoulli numbers. This leads to an explicit representation, not a recurrence relation, for the modified Bernoulli numbers which then yields an explicit formula for eachS k not depending on the earlier ones. This functional equation approach has been and can be applied to more general types of arithmetic sequences and many other types of combinatorial functions, sequences, and problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M. andStegun, I. A.,Handbook of Mathematical Functions. Dover Publications, New York, 1970, p. 804.

    Google Scholar 

  2. Aczél, Janos,Lectures on functional equations and their applications. Academic Press, New York, 1966.

    MATH  Google Scholar 

  3. Aczél, J. andVranceanu, G.,Équations Fonctionnelles Liés aux Groupes Linéaires Commutatifs. Colloq. Math.26 (1972), 371–383.

    MATH  MathSciNet  Google Scholar 

  4. Bernoulli, Jacobi, Ars Conjectandi. Basel, 1713, p. 97-99. (see also Kline [13]).

  5. Budin, Michael A. andCantor, Arnold J.,Simplified computation of sums of powers of integers.IEEE Trans. Systems Man. Cybernet,2 (1972), 284–285.

    Article  Google Scholar 

  6. Carathéodory, C.,Theory of functions of a complex oariable. Vol.I. Second English Edition, Chelsea Publishing Co., New York, 1958, p. 275.

    Google Scholar 

  7. Carlitz, L.,The Staudt-Clausen theorem. Math. Mag.34 (1961), 131–146.

    Article  MATH  MathSciNet  Google Scholar 

  8. Creutz, E.,Sums of integral powers of consecutive integers. Nuclear Science and Engineering52 (1973), 142–144.

    Google Scholar 

  9. Gould, Henry W.,Evaluation of a class of binomial coefficient summations.J. Combinatorial Theory Set. A1 (1966), 233–247.

    Article  MATH  Google Scholar 

  10. Gould, Henry W.,Explicit formulas for Bernoulli numbers. Amer. Math. Monthly79 (1972), 44–51.

    Article  MATH  MathSciNet  Google Scholar 

  11. Gould, Henry W.,Sums of powers of numbers. Unpublished class notes for a Number Theory Course, 1975, West Virginia University.

  12. Jánossy, L., Rényi, A. andAczél, J.,On composed Poisson-distributions, I. Acta Math. Acad. Sci. Hungar.1 (1950), 209–224.

    Article  MATH  Google Scholar 

  13. Kline, Morris,Mathematical thought from ancient to modem times. Oxford University Press, New York, 1972, p. 451.

    Google Scholar 

  14. Levy, L. S.,Summation of the series 1n+2n+...+xnusing elementary calculus. Amer. Math. Monthly77 (1970), 840–847.

    Article  MATH  MathSciNet  Google Scholar 

  15. Nielsen, Niels,Traite Elementaire des Nombres de Bernoulli. Gauthier-Villars, Paris, 1923.

    Google Scholar 

  16. Niven, Ivan,Formal power series. Amer. Math. Monthly76 (1969), 871–889.

    Article  MATH  MathSciNet  Google Scholar 

  17. Nörlund, N. E.,Vorlesungen über Differenzenrechnung. Chelsea Publ. Co., New York, 1954 (reprint of 1924 edition), p. 19, eq. 9.

    Google Scholar 

  18. Paul, J. L,On the sum of the kth powers of the first n integers. Amer. Math. Monthly78 (1971), 271–272.

    Article  MATH  MathSciNet  Google Scholar 

  19. Raabe, J. L., Die Jacob-Bernoullische-Funktion. Zurich 1848.

  20. Rademacher, Hans,Topics in analytic number theory. Springer Verlag, New York, 1973, p. 6.

    MATH  Google Scholar 

  21. Riordan, John,An introduction to combinatorial analysis. John Wiley and Sons, New York, 1958.

    MATH  Google Scholar 

  22. Riordan, John,Combinatorial identities. John Wiley and Sons, New York, 1968, p. 159–161.

    MATH  Google Scholar 

  23. Rodabaugh, Louis D.,Two algorithms for expressing Σ ni=1 ik as a polynomial in n. Pi Mu Epsilon J.5 (1969/70), 49–55.

    MathSciNet  Google Scholar 

  24. Schmidt, Hermann,Über das Additionstheorem der Binomialkoeffizienten. Acquationes Math.10 (1974), 302–306.

    Google Scholar 

  25. Snow, Donald R.,Functional equations and sums of powers of arithmetic sequences. In Proceedings of the 1974 International Congress of Mathematicians, Vancouver, Canada, p. 197. See also Report on the 12th International Symposium on Functional Equations, University of Waterloo and at Victoria Harbour, Canada, Aequationes Math.12 (1975), 268-269.

    Google Scholar 

  26. Snow, Donald R.,Some identities for sums of powers of integers. In Proceedings of Utah Academy of Sciences, Arts and Letters,52 Part 2 (1975), 29–31.

    Google Scholar 

  27. Snow, Donald R.,Combinations and permutations via functional equations. In Report on the 14th International Symposium on Functional Equations, Lecce and Castro Marina, Italy, 21-28 May, 1976, Aequationes Math.15 (1977), 282–283.

    Google Scholar 

  28. Snow, Donald R.,Some applications of functional equations in ecology and biology. In Ecosystem Analysis and Prediction, ed. Simon A. Levin, SIAM, 1975, 306-313.

  29. Snow, Donald R.,A set of two-variable polynomials generalizing Bernoulli's polynomials and numbers. Notices Amer. Math. Soc.24 (1977), A-448.

    Google Scholar 

  30. Snow, Donald R.,The standard formulas for combinations with various repetitions obtained by functional equations. Notices Amer. Math. Soc.25 (1978), A32–33.

    Google Scholar 

  31. Tutte, W. T.,On elementary calculus and the good formula. J. Combinatorial Theory Ser. B18 (1975), 97–137.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snow, D.R. Formulas for sums of powers of integers by functional equations. Aeq. Math. 18, 269–285 (1978). https://doi.org/10.1007/BF03031677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03031677

Keywords

Navigation