Skip to main content
Log in

Agrobacterium-medlated high-efficiency transformation of creeping bentgrass with herbicide resistance

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

We performedAgrobacterium-mediated genetic transformation of creeping bentgrass(Agrostis stolonifera L.) and produced herbicide-resistant transformants from commercial cultivars Crenshaw and Penncross. Seed-derived embryogenie calli were infected withA. tumefaciens EHA105 harboring pCAMBIA 3301, which includes an intron-containinggus reporter and abar selection marker. To establish a stable system, we examined various factors that could potentially influence transformation efficiency during the pre-culture, infection, and co-cultivation steps. The addition of kinetin to the callus pre-culture media increased efficiency about three-fold. Once the optimum infection and co-cultivation conditions were identified, this protocol was used successfully to bulk-produce herbicide-resistant transgenic plants whose herbicide resistance was confirmed using the BASTA® resistance test. Southern blot analysis demonstrated integration and low copy numbers of the integrated transgenes, and northern blot analysis verified their expression. Thus, we have established an efficient genetic transformation system for creeping bentgrass and confirmed a high frequency of single-copy transgene integration and functional gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Asano Y, llo Y, Fukami M, Morifuji M, Fujiie A (1997) Production of herbicide resistant transgenic creeping bent plants. Intl Turfgrass Soc Res J8: 261–267

    Google Scholar 

  • Bonos SA, Plumley KA, Meyer WA (2002) Ploidy determination inAgrostis using flow cytometry and morphological traits. Crop Sci42: 192–196

    PubMed  Google Scholar 

  • Chai B, Slicklen MB (1998) Applications of biotechnology in turfgrass genetic improvement. Crop Sci38: 1320–1338

    Google Scholar 

  • Chai ML, Wang BL, Kim JY, Lee JM, Kim DH (2003) Agrobacterium-mediated transformation of herbicide resistance in creeping bentgrass and colonial bentgrass. J Zhejiang Univ Sci4: 346–351

    Article  PubMed  CAS  Google Scholar 

  • Chai ML, Senlhil KK, Kim DH (2004) Transgenic plants of colonial bentgrass from embryogenie callus viaAgrobacterium-mediated transformation. Plant Cell Tiss Org Cult77: 165–171

    Article  CAS  Google Scholar 

  • Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants ofAgrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques16: 664–670

    PubMed  CAS  Google Scholar 

  • Chung KM, Park YD (2005) Development of an Agrobacterium-mediated transformation system for regenerating garland Chrysanthemum(Chrysanthemum coronarium L.). J Plant Biol48: 136–141

    Article  CAS  Google Scholar 

  • Dai S, Zheng P, Marmey R Zhang S, Tian W, Chen S, Beachy RN, Fauquel C (2001) Comparative analysis of transgenic rice plants obtained byAgrobacterium-mediated transformation and particle bombardment. Mol Breed7: 25–33

    Article  CAS  Google Scholar 

  • Dong S, Qu R (2005) High efficiency transformation of tall fescue withAgrobacterium tumefaciens. Plant Sci168: 1453–1458

    Article  CAS  Google Scholar 

  • Fu D, Xiao Y, Mulhukrishnan S, Liang GH (2005a) In vivo performance of a dual genetic marker,manA-gfp, in transgenic bentgrass. Genome48: 722–730

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Tisserat NA, Xiao Y, Settle D, Muthukrishnan S, Liang GH (2005b) Overexpression of rice TLPD34 enhances dollar-spot resistance in transgenic bentgrass. Plant Sci.168: 671–680

    Article  CAS  Google Scholar 

  • Fu D, Huang B, Xiao Y, Muthukrishnan S, Liang GH (2007) Overexpression of barleyhva1 gene in creeping bentgrass for improving drought resistance. Plant Cell Rep26: 467–477

    Article  PubMed  CAS  Google Scholar 

  • Ge Y, Norton T, Wang ZY (2006) Transgenic zoysia grass(Zoysia japonica) plants obtainedby Agrobacterium-mediated transformation. Plant Cell Rep25: 792–798

    Article  PubMed  CAS  Google Scholar 

  • Ge Y, Cheng X, Hopkins A, Wang ZY (2007) Generation of transgenicLolium temulentum plants byAgrobacterium tumefaciens-mediated transformation. Plant Cell Rep26: 783–789

    Article  PubMed  CAS  Google Scholar 

  • Han N, Chen D, Bian HW, Deng MJ, Zhu MY (2005) Production of transgenic creeping bentgrassAgrostis stolonifera var.palustris plantsby Agrobacterium tumefaciens-mediated transformation using hygromycin selection. Plant Cell Tiss Org Cult81: 131–138

    Article  Google Scholar 

  • Hartman CL, Lee L, Day RR, Turner NE (1994) Herbicide resistant turfgrass (Agrostis palustris Huds.) by biolistic transformation. Bio/Technology12: 919–923

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep5: 387–405

    Article  CAS  Google Scholar 

  • Kim DH, Chai ML, Senthil K, Lee JM, Park MH, Kim JY (2001) Factors affecting the transformation of bentgrass (Agrostis spp.) based onAgrobacterium tumefaciens. J Kor Soc Hort Sci43: 243–248

    Google Scholar 

  • Lee L (1996) Turfgrass biotechnology. Plant Sci115: 1–8

    Article  Google Scholar 

  • Lohar DP, Schuller K, Buzas DM, Gresshoff PM, Stiller J, (2001) Transformation ofLotus japonicus using the herbicide resistant bar gene as a selectable marker. J Exp Bot52: 1 697–1702

    Article  CAS  Google Scholar 

  • Luo H, Hu Q, Nelson K, Longo C, Kausch AP, Chandlee JM, Wipff JK, Fricker CR (2004)Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration. Plant Cell Rep22: 645–652

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant15: 473–497

    Article  CAS  Google Scholar 

  • Prince JP, Pochard E, Tanksley SD (1993) Construction of a molecular linkage map of pepper and a comparison of synteny with tomato. Genome36: 404–417

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Toyama K, Bae CH, Kang JG, Lim YR, Adachi T, Riu KZ, Song PS, Lee HY (2003) Production of herbicide-tolerant zoysia grass byAgrobacterium-mediated transformation. Mol Cells16: 19–27

    PubMed  CAS  Google Scholar 

  • Wang ZY, Ge Y (2005)Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacca). J Plant Physiol162: 103–113

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Ge Y (2006) Recent advances in genetic transformation of forage and turf grasses. In Vitro Cell Dev Biol Plant42: 1–18

    Google Scholar 

  • Wang Z, Hopkins A, Mian R (2001) Forage and turf grass biotechnology. Crit Rev Plant Sci20: 573–619

    Article  CAS  Google Scholar 

  • Wang Y, Browning M, Ruemmele BA, Chandlee JM, Kausch AP (2003) Glufosinate reduces fungal diseases in transgenic glufosinate-resistant bentgrasses (Agrostis spp.) Weed Sci51: 130–137

    Article  CAS  Google Scholar 

  • Warnke S (2003) Creeping bentgrass (Agrostis stoloniiera L.),In MD Casier, RR Duncan, eds, Turfgrass Biology, Genetics, and Breeding. John Wiley & Sons, Inc., NJ, USA, pp 175–185

    Google Scholar 

  • Wehrmann A, Vilel AD, Opsomer C, Bollerman J, Schulz A (1996) The similarities ofbar andpat gene products make them equally applicable for plant engineers. Nature Biotechnol14: 1274–1278

    Article  CAS  Google Scholar 

  • Yu TT, Skinner DZ, Liang GH, Trick HN, Huang B, Muthukrishnan S (2000)Agrobacterium-mediated transformation of creeping bentgrass using GFP as a reporter gene. Hereditas133: 229–233

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Boyland MG, Srinivasan C, Slicklen MB (1993) Trans-genic plants of turfgrass (Agrostis palustris Huds.) from microprojectile bombardment of embryogenic callus. Plant Cell Rep13: 1–6

    Article  CAS  Google Scholar 

  • Zilinskas BA, Wang X (2004) Genetic transformation of turfgrass,In GH Liang, DZ Skinner, eds, Genetically Modified Crops: Their Development, Uses, and Risks. Food Product Press, an imprint of the Haworth Press, Inc., New York, pp 309–350

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-II Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.J., Lee, JY., Kim, YM. et al. Agrobacterium-medlated high-efficiency transformation of creeping bentgrass with herbicide resistance. J. Plant Biol. 50, 577–585 (2007). https://doi.org/10.1007/BF03030712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030712

Keywords

Navigation