Skip to main content
Log in

Potential biochemical markers for infantile autism

  • Published:
Neurochemical Pathology

Abstract

Biochemical markers are crucial to the development of early diagnosis of infantile autism. The blood concentrations of neuroanalytes epinephrine, norepinephrine, dopamine, and serotonin were elevated in autistic subjects (n = 13) as compared to normal controls (n = 10). Autistic subjects had peptide patterns (peaks I-V, Sephadex G-25) that were different from those of normal controls. Methionine-enkephalin has been tentatively identified from fraction I of autistic subjects by HPLC as one of a large number of peptides that appears to be elevated. The HPLC chromatographic patterns of fraction V from all autistic subjects show a peak with retention time of 7.6 min. The HPLC of control urine fraction V revealed no comparable peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Psychiatric Association (1980)Diagnostic and statistical manual of mental disorders. 3rd ed. American Psychiatric Assoc., Washington, DC.

    Google Scholar 

  • Bohus B., Kovacs G. L., and de Wied D. (1978) Oxytoxin, vasopressin and memory: Opposite effects on consolidation and retrieval processes.Brain Res. 157, 414–417.

    Article  PubMed  CAS  Google Scholar 

  • Boullin D. J. and O’Brien R. A. (1972) Uptake and loss of14C-dopamine by platelets from children with infantile autism.J. Autism Child. Schizo. 2, 67–74.

    Article  CAS  Google Scholar 

  • Boullin D. J., Coleman M., and O’Brien R. A. (1970) Abnormalities in platelet 5-hydroxytryptamine efflux in patients with infantile autism.Nature 226, 371–372.

    Article  PubMed  CAS  Google Scholar 

  • Boullin D. J., Coleman M., O’Brien R. A., and Rimland B. (1971) Laboratory predictions of infantile autism based on 5-hydroxytryptamine efflux from blood platelets and their correlation with the Rimland E-2 score.J. Autism Child. Schizo. 1, 63–71.

    Article  CAS  Google Scholar 

  • Causon R. C., Carruthers M. E., and Rodnight R. (1981) Assay of plasma catecholamines by liquid chromatography with electrochemical detection.Anal. Biochem. 116, 223–226.

    Article  PubMed  CAS  Google Scholar 

  • Cohen D. J., Shaywitz B. A., Johnson W. T., and Bowers M. Jr. (1974) Biogenic amines in autistic and atypical children.Arch. Gen. Psychiat. 31, 845–853.

    PubMed  CAS  Google Scholar 

  • Coleman M. (1978) Serotonin in behavioral and intellectual dysfunction of children, inSerotonin in Health and Disease, vol. III:The Central Nervous System (Essman W. B., ed.) pp. 293–316. Spectrum Publications, New York, NY.

    Google Scholar 

  • Coleman M. and Gillberg C. (1985) Biochemical studies, inThe Biology of The Autistic Syndromes (Coleman M. and Gillberg C., eds.) pp. 75–104. Praeger Scientific, New York, NY.

    Google Scholar 

  • Damasio A. R. and Murer R. G. (1978) A neurological model for childhood autism.Arch. Neurol. 35, 777–786.

    PubMed  CAS  Google Scholar 

  • Eadie M. J. and Tyrer J. H. (1983) Disturbances of synaptic transmission, inBiochemical Neurology (Eadie M. J. and Tyrer J. H., eds.), pp. 217–254. Alan R. Liss, New York, NY.

    Google Scholar 

  • Emson P. C. (1979) Peptides as neurotransmitter candidates in the mammalian CNS.Prog. Neurobiol. 13, 61–116.

    Article  CAS  Google Scholar 

  • Garnier C., Barthelemy C., Garreau B., Jouve J., Muh J. P., and Lelord G. (1983) Les anomalies des monoamines et leur enzymes dans Fautisme de l’enfant.Encephale 9, 201–262.

    PubMed  CAS  Google Scholar 

  • Gillberg C., Trygstad O., and Foss I. (1982) Childhood psychosis and urinary excretion of peptides and protein-associated peptide complexes.J. Autism Dev. Disord. 12, 229–241.

    Article  Google Scholar 

  • Goldstein M., Mahanand D., Lee J., and Coleman M. (1976) Dopamine-β-hydroxylase and endogenous total 15-hydroxyindole levels in autistic patients and controls, inThe Autistic Syndromes (Coleman M., ed.) pp. 57–63, North-Holland, Amsterdam.

    Google Scholar 

  • Himwich H. E., Jenkins R. L., Fujimori M., Narasimhachari N., and Ebersole M. (1972) A biochemical study of early infantile autism.J. Autism Child. Schizo. 2, 114–126.

    Article  CAS  Google Scholar 

  • Kanner L. (1943) Autistic disturbances of affective contact.Nerv. Child. 2, 217–250.

    Google Scholar 

  • Kanner L. (1958) The specificity of early infantile autism.Z. Kinderpsychiatr. 25, 108–113.

    Google Scholar 

  • Katsui T., Okuda M., Usuda S., and Koizumi T. (1986) Kinetics of3H-serotonin uptake by platelets in infantile autism and developmental language disorder (including five pairs of twins).J. Autism Dev. Disord. 16, 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Lucas A. R., Warner K., and Gottlieb J. S. (1971) Biological studies in childhood schizophrenia.Biol. Psychiat. 3, 123–128.

    PubMed  CAS  Google Scholar 

  • MacCulloch M. J. and Williams C. (1971) On the nature of infantile autism.Acta Psych. Scand. 47, 295–314.

    Article  CAS  Google Scholar 

  • Moss R. I. and Foreman M. M. (1976) Potentiation of lordosis behaviour by intrahypothalmic infusion of synthetic luteinizing hormone releasing hormone.Neuroendocrinology 20, 176–181.

    Article  PubMed  CAS  Google Scholar 

  • Ornitz E. M. and Ritvo E. R. (1968) Perceptual inconstancy in early infantile autism: A critical review.Am. J. Psychiat. 18, 609–621.

    Google Scholar 

  • Reeve J., Yamada T., Chew P., Walsh J. H., and Dimaline R. (1982) Rapid highyield purification of neuropeptides from canine intestinal muscle.J. Chromatogr. 229, 57–65.

    Article  PubMed  CAS  Google Scholar 

  • Reichelt K. L. and Edminson P. D. (1977) Peptides containing probable transmitter candidates in the central nervous system, inPeptides in Neurobiology (Gainer H., ed.) pp. 171–181. Plenum, New York, NY.

    Google Scholar 

  • Reichelt K. L., Hole K., Hamberger A., Saelid G., Edminson P. D., Braestrup C. B., Lingjaerde O., Ledaal P., and Orbeck H. (1981) Biologically active peptide-containing fractions in schizophrenia and childhood autism, inNeurosecretion and Brain Peptides (Martin J. B., Reichlin S., and Bick K. L., eds.) pp. 627–643. Raven, New York, NY.

    Google Scholar 

  • Rimland B. (1971) The differentiation of childhood psychoses: An analysis of checklists for 2,218 psychotic children.J. Autism Child. Schizo. 1, 161–174.

    Article  CAS  Google Scholar 

  • Ritvo E. R., Yuwiler A., Geller E., Ornitz E. M., Saeger K., and Plotkin S. (1970) Increased blood serotonin and platelets in early infantile autism.Arch. Gen. Psychiat. 23, 566–572.

    PubMed  CAS  Google Scholar 

  • Rosen H. (1957) A modified ninhydrin colorimetric analysis for amino acids.Arch. Biochem. Biophys. 67, 10–15.

    Article  PubMed  CAS  Google Scholar 

  • Rutter, M. (1974) The development of infantile autism.Psychol. Med. 4, 147–163.

    Article  PubMed  CAS  Google Scholar 

  • Sanker D. V. S., Gold E., Phipps E., and Sankar D. B. (1962) General metabolic studies on schizophrenic children.Ann. NY Acad. Sci. 96, 392–398.

    Article  Google Scholar 

  • Schopler E., Reichler R. J., De Villis R. F., and Daly K. (1980) Toward objective classification of childhood autism: Childhood autism rating scale (CARS).J. Autism Dev. Disord. 10, 91–103.

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz B. A., Cohen D. J., and Bowers M. B. (1975) Reduced cerebrospinal fluid 5-hydroxyindole acetic acid and homovanillic acid in children with epilepsy.Neurology 25, 72–79.

    PubMed  CAS  Google Scholar 

  • Stevens J. R. (1973) An anatomy of schizophrenia?Arch. Gen. Psychiat. 29, 177–189.

    PubMed  CAS  Google Scholar 

  • Trygstad O. E., Reichelt K. L., Foss I., Edminson P. D., Saelid G., Bremer J., Hole K., Orbeck H., Johansen J. H., Boler J. B., Titlestad K., and Opstad P. K. (1980) Patterns of peptides and protein-associated-peptide complexes in psychiatric disorders.Br. J. Psychiat. 136, 59–72.

    Article  CAS  Google Scholar 

  • Urban I. V. and de Wied D. (1978) Neuropeptides: Effects on paradoxical sleep and theta rhythm in rats.Pharmacol. Biochem. Behav. 8, 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Victor G. (1983)The Riddle of Autism: A Psychological Analysis. D.C. Heath and Company, Boston, MA.

    Google Scholar 

  • Wise D. and Stein L. (1973) Dopamine-β-hydroxylase deficits in the brains of schizophrenic patients.Science 181, 344–347.

    Article  PubMed  CAS  Google Scholar 

  • Yuwiler A., Plotkin S., Geller E., and Ritvo E. R. (1970) A rapid accurate procedure for the determination of serotonin in whole human blood.Biochem. Med. 3, 426–436.

    Article  PubMed  CAS  Google Scholar 

  • Yuwiler A., Ritvo E. R., Bald D., Kipper D. and Koper A. (1971) Examination of circadian rhythmicity of blood serotonin and platelets in autistic and nonautistic children.J. Autism Child. Schizo. 1, 421–435.

    Article  CAS  Google Scholar 

  • Yuwiler A., Ritvo E., Geller E., Glousman R., Schneiderman G., and Matsuno D. (1975) Uptake and efflux of serotonin from platelets of autistic and nonautistic children.J. Autism Child. Schizo. 5, 83–98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Israngkun, P.P., Newman, H.A.I., Patel, S.T. et al. Potential biochemical markers for infantile autism. Neurochemical Pathology 5, 51–70 (1986). https://doi.org/10.1007/BF03028036

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03028036

Index Entries

Navigation