Skip to main content
Log in

Precipitation behavior of σ phase in fusion zone of dissimilar stainless steel welds during multi-pass GTAW process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The purpose of this study is to investigate the precipitation characteristics of σ phase in the fusion zone of stainless steel welds at various welding passes during a tungsten are welding (GTAW) process. The morphology, quantity, and chemical composition of the δ-ferrite and σ phase were analyzed using optical microscopy (OM), a ferritscope (FS), a X-ray diffractometer (XRD), scanning electron microscopy (SEM), an electron probe micro-analyzer (EPMA), and a wavelength dispersive spectrometer (WDS), respectively. Massive δ-ferrite was observed in the fusion zone of the first pass welds during welding of dissimilar stainless steels. The σ phase precipitated at the inner δ-ferrite particles and decreased δ-ferrite content during the third pass welding. The σ and δ phases can be stabilized by Si element, which promoted the phase transformation of σ→ϱ+λ2 in the fusion zone of the third pass welds. It was found that the σ phase was a Fe−Cr−Si intermetallic compound found in the fusion zone of the third pass welds during multi-pass welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Missori and C. Koerber,Weld. J. 76, 125s (1997).

  2. P. Michael, S. Oliver, and G. Thomas,Mater. Charact. 58, 65 (2007).

    Article  CAS  Google Scholar 

  3. J. O. Nilsson,Mater. Sci. Technol. 8, 685 (1992).

    CAS  Google Scholar 

  4. R. F. Steigerwald,Corrosion 33, 338 (1977).

    CAS  Google Scholar 

  5. H. Kiesheyer, H. brandis,Z. Metallkd. 67, 258 (1976).

    CAS  Google Scholar 

  6. C. J. Park, M. K. Ahn, and H. S. Kwon,Mater. Sci. Eng. A 418, 211 (2006).

    Article  CAS  Google Scholar 

  7. L. Karlsson, L. Ryen, and S. Pak,Weld. J. 74, 28s (1995).

  8. T. H. Chen, K. L. Weng, and J. R. Yang,Mater. Sci. Eng. A 338, 259 (2002).

    Article  Google Scholar 

  9. J. O. Nilsson, P. Kangas, T. Karlsson, and A. Wilson,Metall. Trans A 31, 35 (2000).

    Article  Google Scholar 

  10. Y. S. Ahn, M. Kim, and B. H. Jeong,Mater. Sci. Technol. 18, 383 (2002).

    Article  CAS  Google Scholar 

  11. Y. S. Ahn and J. P. Kang,Mater. Sci. Technol. 16, 382 (2000).

    CAS  Google Scholar 

  12. J. O. Nilsson and A. Wilson,Mater. Sci. Technol. 9, 545 (1993).

    CAS  Google Scholar 

  13. L. Jianchun, W. Tuyan, and R. Yves,Mater. Sci. Eng. A 174. 149 (1994).

    Article  Google Scholar 

  14. F. C. Hull,Weld. J. 52, 104s-13s (1973).

    Google Scholar 

  15. S. Atamert and J. E. King,J. Mater. Sci. Lett. 12, 1144 (1993).

    Article  CAS  Google Scholar 

  16. F. Wever, W. Jellinghaus, and M. K. Wilhelm,Inst. Dusseldorf 13, 143 (1931).

    CAS  Google Scholar 

  17. R. E. Hanneman, R. E. Ogilvie, and H. C. Gatos,Trans. Metall. Sot. AIME 3, 685 (1965).

    Google Scholar 

  18. O. Kubaschewski,Iron-Binary Phase Diagram, Springer-Verlag, New York (1982).

    Google Scholar 

  19. G. V. Raynor and V. G. Rivling,Int. Mater. Rev. 29, 329 (1984).

    CAS  Google Scholar 

  20. M. Raghavan, R. R. Mueller, G. A. Vaughn, and S. Floreen,Metall. Trans A 15, 783 (1984).

    Article  Google Scholar 

  21. G. V. Smith,Iron Age 166, 63 (1950).

    CAS  Google Scholar 

  22. F. J. Shortsleeve and M. E. Nichlson,Trans. Am. Soc. Met. 43, 142 (1951).

    Google Scholar 

  23. E. O. Hall and S. H. Algie,Metal. Rev. 11, 61 (1966).

    Google Scholar 

  24. M. Subiel and B. Sepiol,Solid State Commum. 111, 613 (1999).

    Article  Google Scholar 

  25. Y. Komizo, K. Ogawa, and S. Azuma,Yosetsu Gakkai Ronbunshu 8, 78 (1990).

    Google Scholar 

  26. K. Ogawa, M. Miura, and Y. Komizo,Yosetsu Gakkai Ronbunshu 9, 61 (1991).

    Google Scholar 

  27. A. Turnbull, P. E. Francis, M. P. Ryan, L. P. Orkney, A. J. Griffiths, and B. Hawkins,Corros. 58, 1039 (2002).

    Article  CAS  Google Scholar 

  28. G. F. Vander Voort, G. M. Lucas, and E. P. Manilova,Metallography and Microstructures of Stainless Steels and Maraging Steels, p. 670–700, ASM Handbook: Alloy Phase Diagrams, ASM International, Materials Park, Ohio (2004).

    Google Scholar 

  29. D. Y. Lin, G. L. Liu, T. C. Chang, and C. C. Hsieh,J. Alloy Compd. 377, 150 (2004).

    Article  CAS  Google Scholar 

  30. C. C. Hsieh,Master Thesis, p. 56–132, I-Shou University, Taiwan (2004).

  31. C. C. Hsieh and D. Y. Lin,J. Met. Heat Treat. 86, 34 (2005).

    Google Scholar 

  32. C. C. Hsieh and D. Y. Lin,J. Met. Heat Treat. 88, 28 (2006).

    Google Scholar 

  33. C. C. Hsieh, D. Y. Lin, and W. Wu,Mater. Sci. Eng. A. (In press).

  34. C. C. Hsieh, T. C. Chang, D. Y. Lin, M. C. Chen, and W. Wu,Met. Mater. Int. (In press).

  35. D. Y. Lin, T. C. Chang, and G. L. Liu,Scripta Mater. 49, 855–860 (2003).

    Article  CAS  Google Scholar 

  36. F. Liu, Y. H. Hwang, and S. W. Nam,Mater. Sci. Eng. A 427, 35–41 (2006).

    Article  CAS  Google Scholar 

  37. S. H. C. Park and Y. S. Sato,Scripta Mater. 49, 1175–1180 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weite Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, CC., Chang, TC., Lin, DY. et al. Precipitation behavior of σ phase in fusion zone of dissimilar stainless steel welds during multi-pass GTAW process. Met. Mater. Int. 13, 411–416 (2007). https://doi.org/10.1007/BF03027877

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027877

Keywords

Navigation