Skip to main content
Log in

Old and new moving-knife schemes

  • Article
  • Published:
The Mathematical Intelligencer Aims and scope Submit manuscript

Conclusions

In general, moving-knife schemes seem to be easier to come by than pure existence results (like Neyman’s [N] theorem) but harder to come by than discrete algorithms (like the Dubins-Spanier [DS] last-diminisher method). For envy-free allocations for four or more people, however, the order of difficulty might actually be reversed. Neyman’s existence proof (for anyn) goes back to 1946, the discovery of a discrete algorithm for alln ≥ 4 is quite recent [BT1, BT2, BT3], and a moving-knife solution forn = 4 was found only as this article was being prepared (see [BTZ]). We are left with this unanswered question: Is there a moving-knife scheme that yields an envyfree division for five (or more) players?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Austin, Sharing a cake,Mathematical Gazette 6 (437), (1982), 212–215.

    Article  Google Scholar 

  2. J. B. Barbanel, Game-theoretic algorithms for fair and strongly fair cake division with entitlements,Colloquium Math, (forthcoming).

  3. S. J. Brams and A. D. Taylor, An envy-free cake-division protocol,Am. Math. Monthly 102(1) (1995), 9–18.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. J. Brams and A. D. Taylor,Fair Division: From Cake-Cutting to Dispute Resolution, Cambridge: Cambridge University Press (1996).

    MATH  Google Scholar 

  5. S. J. Brams and A. D. Taylor, A note on envy-free cake division,J. Combin. Theory (A) 70(1) (1995), 170–173.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. J. Brams, A. D. Taylor, and W. S. Zwicker, A moving-knife solution to the four-person envy-free cake-division problem, Proc. of the Am. Math. Soc (forthcoming).

  7. L. E. Dubins and E. H. Spanier, How to cut a cake fairly,Am. Math. Monthly 68(1) (1961), 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. M. Fink, A note on the fair division problem,Math. Mag. 37(5) (1964), 341–342.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Gale, Mathematical entertainments,Mathematical Intelligencer 15(1) (1993), 48–52.

    Article  MathSciNet  Google Scholar 

  10. G. Gamow and M. Stern,Puzzle-Math, New York: Viking (1958).

    MATH  Google Scholar 

  11. M. Gardner,Aha! Aha! Insight, New York: W. H. Freeman and Company, (1978), 123–124.

    Google Scholar 

  12. H. Kuhn, On games of fair division,Essays in Mathematical Economics (Martin Shubik, ed.), Princeton, NJ: Princeton University Press (1967), 29–37.

    Google Scholar 

  13. S. T. Lowry,The Archeology of Economic Ideas: The Classical Greek Tradition, Durham, NC, Duke University Press: (1987).

    Google Scholar 

  14. S. X. Levmore and E. E. Cook,Super Strategies for Puzzles and Games, Garden City, NY: Doubleday and Company (1981), 47–53.

    Google Scholar 

  15. J. Neyman, Un théorème ďexistence, C.R. Acad. Sci. Paris 222 (1946), 843–845.

    MATH  MathSciNet  Google Scholar 

  16. D. Olivastro, Preferred shares,The Sciences (March/April, 1992), 52–54.

  17. K. Rebman, How to get (at least) a fair share of the cake,Mathematical Plums (Ross Honsberger, ed.), Washington, DC: Mathematical Association of America (1979), 22–37.

    Google Scholar 

  18. H. Steinhaus, The problem of fair division,Econometrica 16(1) (1948), 101–104.

    Google Scholar 

  19. H. Steinhaus, Sur la division pragmatique,Econometrica (Supplement) 17 (1949), 315–319.

    Article  MathSciNet  Google Scholar 

  20. H. Steinhaus,Mathematical Snapshots, 3rd éd., New York: Oxford University Press (1969).

    MATH  Google Scholar 

  21. W. Stromquist, How to cut a cake fairly,Am. Math. Monthly 87(8) (1980), 640–644; addendum, 88(8) (1981), 613-614.

    Article  MATH  MathSciNet  Google Scholar 

  22. W. Stromquist and D. R. Woodall, Sets on which several measures agree,J.Math. Anal. Appi. 108(1) (1985), 241–248.

    MATH  MathSciNet  Google Scholar 

  23. W. Webb, But he got a bigger piece than I did, preprint, (n.d.).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brams, S.J., Taylor, A.D. & Zwicker, W.S. Old and new moving-knife schemes. The Mathematical Intelligencer 17, 30–35 (1995). https://doi.org/10.1007/BF03024785

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03024785

Keywords

Navigation