Skip to main content
Log in

Propofol induces growth cone collapse and neurite retractions in chick explant culture[Le propofol provoque un collapsus des cônes de croissance et des rétractions des neurites de poussin embryonnaire en culture]

  • General Anesthesia
  • Published:
Canadian Journal of Anesthesia/Journal canadien d'anesthésie Aims and scope Submit manuscript

Abstract

Purpose

Propofol neurotoxicity has been demonstrated in several cell culture systems. This study was undertaken to determine whether propofol has neurotoxic effects on peripheral, retinal, and autonomic neurons, and which neurons are particularly liable to injury by propofol.

Method

Dorsal root ganglia, retinal ganglion cell layers, and sympathetic ganglion chains were isolated from day eight chick embryos and cultured for 20 hr. Thereafter, propofol was added at various concentrations [5-300 μM (0.9-53 μg·mL-1)] to investigate its effects on these three types of neuronal tissue. Morphological changes were examined quantitatively by growth cone collapse assay. Propofol concentrations were measured using high performance liquid chromatography.

Results

Propofol induced growth cone collapse and neurite destruction. The three types of neurons tested exhibited significantly different dose-response relationships two hours after the application of propofol (P < 0.001) but not at 24 hr after application. The growth cone-collapsing effect was at least partially reversible in all three types of neurons after exposure to 100 μM propofol up to six hours, though reversibility was not observed after 24-hr exposure.

Conclusion

While the clinical safety profile of propofol has been well documented, at high concentrations propofol has potential neurotoxicity on growing neurons in vitro.

Objectif

La neurotoxicité du propofol a été démontrée dans plusieurs systèmes de culture cellulaire. Notre étude cherche à déterminer si le propofol a des effets neurotoxiques sur les neurones périphériques, rétiniens et du système autonome, et quels neurones sont particulièrement susceptibles de subir des lésions causées par le propofol.

Méthode

Des ganglions de la racine dorsale, des couches cellulaires de la rétine et des chaînes sympathiques provenant d’embryons de poussin de huit jours ont été isolés et mis en culture pendant 20 h. Par la suite, différentes concentrations de propofol ont été ajoutées [5-300 μM (0,9-53 μg·mL-1)] pour étudier ses effets sur les trois types de tissu neuronal. Les changements morphologiques ont été évalués quantitativement par l’analyse du collapsus des cônes de croissance. La chromatographie liquide à haute performance a été utilisée pour mesurer les concentrations de propofol.

Résultats

Le propofol a provoqué un collapsus des cônes de croissance et la destruction des neurites. Les trois types de neurones testés ont affiché des relations dose-réponse significativement différentes, deux heures après l’application du propofol (P < 0,001) mais non à 24 h après l’application. L’effet de collapsus des cônes de croissance était au moins partiellement réversible dans les trois types de neurones après l’exposition à 100 μM de propofol pendant six heures ou moins, mais la réversibilité n’était plus observée après 24 h d’exposition.

Conclusion

Le profil de sécurité clinique du propofol est bien connu, mais à concentrations élevées, le propofol possède une neurotoxicité potentielle sur les neurones en développement in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Sebel PS, Lowdon JD. Propofol: a new intravenous anesthetic. Anesthesiology 1989; 71:260–77.

    Article  CAS  PubMed  Google Scholar 

  2. Bryson HM, Fulton BR, Faulds D. Propofol. An update of its use in anaesthesia and conscious sedation. Drug 1995; 50:513–59.

    Article  CAS  Google Scholar 

  3. Eriksson O, Pollesello P, Saris NE. Inhibition of lipid peroxidation in isolated rat liver mitochondria by the general anaesthetic propofol. Biochem Pharmacol 1992; 44:391–3.

    Article  CAS  PubMed  Google Scholar 

  4. Lavine SD, Masri LS, Levy ML, Giannotta SL. Temporary occlusion of the middle cerebral artery in intracranial aneurysm surgery: time limitation and advantage of brain protection. J Neurosurg 1997; 87:817–24.

    Article  CAS  PubMed  Google Scholar 

  5. Young Y, Menon DK, Tisavipat N, Matta BF, Jones JG. Propofol neuroprotection in a rat model of ischaemia reperfusion injury. Eur J Anaesthesiol 1997; 14:320–6.

    Article  CAS  PubMed  Google Scholar 

  6. Bacon RC, Razis PA. The effect of propofol sedation in pregnancy on neonatal condition. Anaesthesia 1994; 49:1058–60.

    Article  CAS  PubMed  Google Scholar 

  7. Lanigan C, Sury M, Bingham R, Howard R, Mackersie A. Neurological sequelae in children after prolonged propofol infusion. Anaesthesia 1992; 47:810-1.

    Article  CAS  PubMed  Google Scholar 

  8. Trotter C, Serpell MG. Neurological sequelae in children after prolonged propofol infusion. Anaesthesia 1992; 47:340–2.

    Article  CAS  PubMed  Google Scholar 

  9. Vasile B, Rasulo F, Candiani A, Latronico N. The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Med 2003; 29:1417–25.

    Article  PubMed  Google Scholar 

  10. Casserly B, O’Mahony E, Timm EG, Haqqie S, Eisele G, Urizar R. Propofol infusion syndrome: an unusual cause of renal failure. Am J Kidney Dis 2004; 44:e98-101.

    Article  PubMed  Google Scholar 

  11. Parke TJ, Stevens JE, Rice AS, et al. Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five case reports. BMJ 1992; 305:613–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Honegger P, Matthieu JM. Selective toxicity of the general anesthetic propofol for GABAergic neurons in rat brain cell cultures. J Neurosci Res 1996; 45:631–6.

    Article  CAS  PubMed  Google Scholar 

  13. Honegger P, Lenoir D, Favord P. Growth and differentiation of aggregating fetal brain cells in a serum-free defined medium. Nature 1979; 282:305–8.

    Article  CAS  PubMed  Google Scholar 

  14. Spahr-Schopfer I, Vutskits L, Toni N, Buchs PA, Parisi L, Muller D. Differential neurotoxic effects of propofol on dissociated cortical cells and organotypic hippocampal cultures. Anesthesiology 2000; 92:1408-17.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu H, Cottrell JE, Kass IS. The effect of thiopental and propofol on NMDA-and AMPA-mediated glutamate excitotoxicity. Anesthesiology 1997; 87:944–51.

    Article  CAS  PubMed  Google Scholar 

  16. Raper JA, Kapfhammer JP. The enrichment of a neuronal growth cone collapsing activity from embryonic chick brain. Neuron 1990; 4:21–9.

    Article  CAS  PubMed  Google Scholar 

  17. Saito S. Cholinesterase inhibitors induce growth cone collapse and inhibit neurite extension in primary cultured chick neurons. Neurotoxicol Teratol 1998; 20:411–9.

    Article  CAS  PubMed  Google Scholar 

  18. Patterson PH. Process outgrowth and the specificity of connections. In: Hall ZW (Ed.). An Introduction to Molecular Neurobiology. Sunderland: Sinauer Associates; 1992:388–427.

    Google Scholar 

  19. Bottenstein JE, Skaper SD, Varon SS, Sato GH. Selective survival of neurons from chick embryo sensory ganglionic dissociates utilizing serum-free supplemented medium. Exp Cell Res 1980; 125:183–90.

    Article  CAS  PubMed  Google Scholar 

  20. Busby WF Jr, Ackermann JM, Crespi CL. Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450. Drug Metab Dispos 1999; 27:246–9.

    CAS  PubMed  Google Scholar 

  21. Saito S, Radwan I, Obata H, Takahashi K, Goto F. Direct neurotoxicity of tetracaine on growth cones and neurites of growing neurons in vitro. Anesthesiology 2001; 95:726–33.

    Article  CAS  PubMed  Google Scholar 

  22. Hiraoka H, Yamamoto K, Okano N, Morita T, Goto F, Horiuchi R. Changes in drug plasma concentrations of an extensively bound and highly extracted drug, propofol, in response to altered plasma binding. Clin Pharmacol Ther 2004; 75:324–30.

    Article  CAS  PubMed  Google Scholar 

  23. Levine I, Flief A, Sansur M, Wroblewski F. Clinical implications of lactic dehydrogenase activity in sputum. JAMA 1969; 207:2436–7.

    Article  CAS  PubMed  Google Scholar 

  24. Vutskits L, Gascon E, Tassonyi E, Kiss JZ. Clinically relevant concentrations of propofol but not midazolam alter in vitro dendritic development of isolated gamma-aminobutyric acid-positive interneurons. Anesthesiology 2005; 102:970–6.

    Article  CAS  PubMed  Google Scholar 

  25. Feiner JR, Bickler PE, Estrada S, Donohoe PH, Fahlman CS, Schuyler JA. Mild hypothermia, but not propofol, is neuroprotective in organotypic hippocampal cultures. Anesth Analg 2005; 100:215–25.

    Article  CAS  PubMed  Google Scholar 

  26. Dawidowicz AL, Fijalkowska A, Nestorowicz A, Kalitynski R, Trojanowski T. Cerebrospinal fluid and blood propofol concentration during total intravenous anaesthesia for neurosurgery. Br J Anaesth 2003; 90:84–6.

    Article  CAS  PubMed  Google Scholar 

  27. Jensen AG, Lindroth M, Sjolander A, Eintrei C. Propofol induces changes in the cytosolic free calcium concentration and the cytoskeletal organization of cultured human glial cells and primary embryonic rat brain cells. Anesthesiology 1994; 81:1220–9.

    Article  CAS  PubMed  Google Scholar 

  28. Chen RM, Wu CH, Chang HC, et al. Propofol suppresses macrophage functions and modulates mitochondrial membrane potential and cellular adenosine triphosphate synthesis. Anesthesiology 2003; 98:1178–85.

    Article  CAS  PubMed  Google Scholar 

  29. Engelhard K, Werner C, Eberspacher E, et al. Influence of propofol on neuronal damage and apoptotic factors after incomplete cerebral ischemia and reperfusion in rats: a long-term observation. Anesthesiology 2004; 101:912–7.

    Article  CAS  PubMed  Google Scholar 

  30. Lin CR, Cheng JT, Lin FC, et al. Effect of thiopental, propofol, and etomidate on vincristine toxicity in PC12 cells. Cell Biol Toxicol 2002; 18:63–70.

    Article  CAS  PubMed  Google Scholar 

  31. Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 1993; 75:217–27.

    Article  CAS  PubMed  Google Scholar 

  32. Johnson AR. Contact inhibition in the failure of mammalian CNS axonal regeneration. Bioessays 1993; 15:807-13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Saito.

Additional information

Financial support: This work was supported by research grants from the Japanese government to Saito S. and Goto F. (Ministry of Science, Education and Sports).

This work was supported by research grants from the Japanese government to Saito S. and Goto F. (Ministry of Science, Education and Sports).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Jahdari, W.S., Saito, S., Goto, F. et al. Propofol induces growth cone collapse and neurite retractions in chick explant culture[Le propofol provoque un collapsus des cônes de croissance et des rétractions des neurites de poussin embryonnaire en culture]. Can J Anesth 53, 1078–1085 (2006). https://doi.org/10.1007/BF03022874

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03022874

Keywords

Navigation