Skip to main content
Log in

Modern planktic foraminifera

  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Abstract

Planktic foraminifers are marine protozoans with calcareous Shells and chambered tests. They first appeared in the mid-Jurassic and spread since the mid-Cretaceous over all the world’s oceans. Modern planktic foraminifers evolved since the early Tertiary, when the first spinose species occurred. Most species live in the surface to sub-thermocline layer of the open ocean, and in marginal seas like the Mediterranean, Caribbean, South China Sea, and Red Sea. Planktic foraminifers are absent in shallow marginal seas, for example, the North Sea. Planktic foraminifers respond to food, temperature and chemistry of the ambient seawater. Species abundance varies according to seasons, water masses, and water depths. Symbiont-bearing species depend on light and are restricted to the euphotic zone. Planktic foraminifers constitute a minor portion of total Zooplankton, but are major producers of marine calcareous particles (shells) deposited on the ocean floor where they form the so-called foraminiferal ooze.

Planktic foraminifers contribute substantially to the fossil record of marine Sediments and are of high ecologic, paleoceanographic, and stratigraphic significance since the mid-Cretaceous. Radiocarbon (14C) gives an absolute age of shell formation within late Pleistocene and Holocene Sediments. Factors that determine the modern faunal composition are applied to Interpretation of the fossil assemblages, for example, by multiple regression techniques (transfer functions) to yield an estimate on ancient environmental parameters. The chemical composition of the calcareous shell (stable isotopes and trace elements) holds clues to the chemical and physical State of the ambient seawater and is useful in the reconstruction of temperature, chemical State, and biological productivity of the ancient marine environment.

Kurzfassung

Planktische Foraminiferen sind kalkschalige, marine Protozoen mit gekammerten Gehäusen. Sie sind seit dem mittleren Jura (∼170 Millionen Jahre) fossil überliefert. Seit der mittleren Kreide sind planktische Foraminiferen im marinen Pelagial weit verbreitet. Die meisten Arten sind an der Kreide / Tertiär-Grenze ausgestorben. Die modernen Arten, mit den spinösen -stacheltragenden- Arten, haben sich seit dem Tertiär entwickelt. Der Lebensraum der meisten Arten ist die euphotische Deckschicht bis knapp unterhalb der saisonalen Thermokline. Wenige Arten leben in der Tiefsee. Auch in tiefen Randmeeren leben planktische Foraminiferen, wie etwa im Mittelmeer, der Karibik, dem Südchinesischen Meer und dem Roten Meer. In flachen Randmeeren, wie der Nordsee, sind planktische Foraminiferen nicht heimisch. Das Artenspektrum variiert entsprechend des Futterangebotes, der Temperatur und des Chemismus des umgebenden Wassers. Symbiontentragende Arten sind lichtabhängig und an die euphotische Zone gebunden. Planktische Foraminiferen bilden nur einen geringen Teil der planktischen Biomasse, sind aber hauptsächlich an der Produktion und Sedimentation des marin-pelagischen, partikulären Karbonates beteiligt.

Planktische Foraminiferen bilden den sogenannten Foraminiferen-Schlamm am Meeresboden und tragen substantiell zum fossilen Inhalt mariner Sedimente bei. Seit der mittleren Kreide sind planktische Foraminiferen stratigraphische Leitfossilien und wichtige ökologische und paläoozeanographische Indikatoren. Radiokohlenstoff (14C) der Foraminiferengehäuse wird zur absoluten Altersdatierung pleistozäner und holozäner Sedimente genutzt. Daten zur Ökologie rezenter Faunen werden mit multiplen Regressionsverfahren (Transferfunktionen) auf fossile Faunen übertragen und damit paläo-ökologische, -ozeanographische und -klimatologische Rekonstruktionen ermöglicht. Die chemische Zusammensetzung (stabile Isotope und Spurenelemente) der kalkigen Foraminiferenschale repräsentiert den chemischen und physischen Zustand des umgebenden Meerwassers und liefert wichtige Daten zur Rekonstruktion von Temperatur, chemischer Zusammensetzung und biologischer Produktivität vergangener Ozeane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almogi-Labin, A. 1981. Paleoceanographic significance of pteropoda and planktonic foraminiferida in the water column and Sediments of the Gulf of Elat (Aqaba) and northern Red Sea. — Ph.D. thesis, Hebrew University, Jerusalem, 158 p.

    Google Scholar 

  • Anand, P.;Elderfield, H. &Conte, M.H. 2003. Calibration of Mg/Ca thermometry in planktonic foraminifera from a Sediment trap time series. — Paleoceanography18 (2): 1050, doi:10.1029/2002PA000846.

    Article  Google Scholar 

  • Anderson, L.A. &Sarmiento, J.L. 1994. Redfield ratios of remineralization determined by nutrient data analysis. — Global Biogeochemical Cycles8 (1): 65–80.

    Article  Google Scholar 

  • Anderson, O.R.;Spindler, M.;Bé, A.W.H. &Hemleben, C. 1979. Trophic activity of planktonic foraminifera. — Journal of the Marine Biological Association of the United Kingdom59 (3): 791–799.

    Google Scholar 

  • Antoine, D.;André, J.-M. &Morel, A. 1996. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color Scanner) Chlorophyll. — Global Biogeochemical Cycles10 (1): 57–69.

    Article  Google Scholar 

  • Archer, D. &Winguth, A. 2000. What caused the glacial/interglacial atmosphericpCO2 cycles? — Reviews of Geophysics38 (2): 159–189.

    Article  Google Scholar 

  • Bé, A.W.H. 1967. Foraminifera: Families: Globigerinidae and Globorotaliidae. — Fiches d’Identification du Zooplancton. Conseil Permanent International pour l’Exploration de la Mer. Zooplankton Sheet108: 1–8.

    Google Scholar 

  • Bé, A.H.W. 1977. An ecological, Zoogeographie and taxonomic review of Recent planktonic Foraminifera. — In:Ramsay, A.T.S., ed., Oceanic Micropaleontology1: 1–100, London (Academic Press).

    Google Scholar 

  • Bé, A.H.W. 1980. Gametogenetic calcification in a spinose planktonic foraminifer,Globigerinoides sacculifer (Brady). — Marine Micropaleontology5: 283–310.

    Article  Google Scholar 

  • Bé, A.H.W. &Tolderlund, D.S. 1971. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. — In:Funnell, B.M. &Riedel, W.R., eds., The Micropaleontology of the Oceans: 105–149, Cambridge (University Press).

    Google Scholar 

  • Berger, W.h. 1971. Sedimentation of planktonic Foraminifera. — Marine Geology11 (5): 325–358.

    Article  Google Scholar 

  • Berger, W.H. 1981. Paleoceanography: the deep-sea record. — In:Emiliani, C, ed., The Sea7: 1437–1519.

    Google Scholar 

  • Berger, W.H. &Piper, D.J.W. 1972. Planktonic Foraminifera: differential settling, dissolution, and redeposition. — Limnology and Oceanography17 (2): 275–287.

    Article  Google Scholar 

  • Berger, W.H.;Fischer, K.;Lai, C. &Wu, G. 1988. Ocean carbon flux: global maps of primary production and export production. — NOAA National Undersea Research Program88 (1): 131–176.

    Google Scholar 

  • Berger, W.H.;Killingley, J.S. &Vincent, E. 1978. Stable isotopes in deep-sea carbonates: box core ERDC-92, west Equatorial Pacific. — Oceanologica Acta1 (2): 203–216.

    Google Scholar 

  • Berger, W.H.;Smetacek, V.S. &Wefer, G. 1989. Productivity of the ocean: present and past. — 471 p., Chichester (John Wiley & Sons).

    Google Scholar 

  • Bijma, J.;Erez, J. &Hemleben, C. 1990a. Lunar and semi-lunar reproductive-cycles in some spinöse planktonic foraminifers. — Journal of Foraminiferal Research20 (2): 117–127.

    Google Scholar 

  • Bijma, J.;Faber, W.W. &Hemleben, C. 1990b. Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures. — Journal of Foraminiferal Research20 (2): 95–116.

    Google Scholar 

  • Bijma, J.;Hemleben, C. &Wellnitz, K. 1994. Lunar-influenced carbonate flux of the planktic foraminiferGlobigerinoides sacculifer (Brady) from the Central Red-Sea. — Deep-Sea Research141 (3): 511–530.

    Google Scholar 

  • Bijma, J.;Hönisch, B. &Zeebe, R.E. 2002. Impact of the ocean carbonate chemistry on living foraminiferal shell weight: Comment on “Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea” by W.S. Broecker and E. Clark. — Geochemistry Geophysics Geosystems3 (11): 1064, doi:10.1029/2002GC000388.

    Article  Google Scholar 

  • Billups, K. &Spero, H.J. 1995. Relationship between shell size, thickness and stable isotopes in individual planktonic Foraminifera from 2 Equatorial Atlantic cores. — Journal of Foraminiferal Research25 (1): 24–37.

    Google Scholar 

  • Boyle, E.A.;Sclater, F. &Edmond, J.M. 1976. On the marine geochemistry of cadmium. — Nature263: 42–44.

    Article  Google Scholar 

  • Brady, H.B. 1884. Report on the Foraminifera dredged by H.M.S. Challenger, during the years 1873–1876. — In:Thomson, C.W. &Murray, J., eds., Report on the scientific results of the voyage of H.M.S. Challenger during the years 1873–76. Zoology - Vol. IX. Text: i–xxi, 1–814, London (Printed for Her Majesty’s Stationary Office).

    Google Scholar 

  • Bramlette, M.N. 1958. Significance of coccolithophorids in calcium-carbonate deposition. — Bulletin of the Geological Society of America69: 121–126.

    Article  Google Scholar 

  • Broecker, W.S. &Peng, T.-H. 1982. Tracers in the Sea. — 690 p., Palisades, New York (Eldigio Press).

    Google Scholar 

  • Brummer, G.J.A. &Kroon, D. 1988. Planktonic foraminifers as tracers of ocean-climate history. — 346 p., Ph.D. Thesis, Amsterdam (Free University Press).

    Google Scholar 

  • Brummer, G.J.A.;Hemleben, C. &Spindler, M. 1986. Planktonic foraminiferal ontogeny and new perspectives for micropalaeontology. — Nature319 (6048): 50–52.

    Article  Google Scholar 

  • Caron, D.A. &Bé, A.W.H. 1984. Predicted and observed feeding rates of the spinose planktonic foraminiferGlobigerinoides sacculifer. — Bulletin of Marine Science35 (1): 1–10.

    Google Scholar 

  • Caron, D.A.;Faber W.W. &Bé, A.W.H. 1987. Effects of temperature and salinity on the growth and survival of the planktonic foraminiferGlobigerinoides sacculifer. — Journal of the Marine Biological Association of the United Kingdom67 (2): 323–341.

    Google Scholar 

  • Cronblad, H.G. &Malmgren, B.A. 1981. Climatically controlled Variation of Sr and Mg in Quaternary planktonic Foraminifera. — Nature291 (5810): 61–64.

    Article  Google Scholar 

  • Cushman, J.A. 1911. A monograph of the Foraminifera of the North Pacific Ocean. Part II. Textulariidae. — Smithsonian Institution, United States National Museum, Bulletin71 (2): 1–108.

    Google Scholar 

  • Cushman, J.A. 1934. A recentGümbelitria(?) from the Pacific. — Contributions from the Cushman Laboratory for Foraminiferal Research10: 105.

    Google Scholar 

  • Cushman, J.A. &Todd, R. 1949. Species of the genusChilostomella and related genera. — Contributions from the Cushman Laboratory for Foraminiferal Research25 (4): 84–99.

    Google Scholar 

  • Darling, K.F.;Wade, CM.;Kroon, D. &Brown, A.J.L., 1997. Planktic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa. — Marine Micropaleontology30 (4): 251–266.

    Article  Google Scholar 

  • Darling, K.F.;Wade, CM.;Stewart, I.A.;Kroon, D.;Dingle, R. &Brown, A.J.L. 2000. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic formanifers. — Nature405: 43–47.

    Article  Google Scholar 

  • De Vargas, C &Pawlowski, J. 1998. Molecular versus taxonomic rates of evolution in planktonic Foraminifera. — Molecular Phylogenetics and Evolution9 (3): 463–469.

    Article  Google Scholar 

  • De Vargas, C;Bonzon, M.;Rees, N.W.;Pawlowski, J. &Zaninetti, L. 2002. A molecular approach to biodiversity and biogeography in the planktonic foraminiferGlobigerinella siphonifera (d’Orbigny). — Marine Micropaleontology45 (2): 101–116.

    Article  Google Scholar 

  • Dieckmann, G.S.;Spindler, M.;Lange, M.A.;Ackley, S.F. &Eikken, H. 1991. Antarctic sea ice — a habitat for the foraminiferNeogloboquadrina pachyderma. — Journal of Foraminiferal Research21 (2): 182–189.

    Google Scholar 

  • Dittert, N.;Baumann, K.H.;Bickert, T.;Henrich, R.;Huber, R.;Kinkel, H. &Meggers, H. 1999. Carbonate dissolution in the deep-sea: Methods, quantification and paleoceanographic application. — In: Fischer, G. & Wefer, G., eds., Use of proxies in paleoceanography: 255–284, Berlin (Springer).

    Google Scholar 

  • Durazzi, J.T. 1981. Stable isotope studies of planktonic foraminifera in North-Atlantic core tops. — Palaeogeography Palaeoclimatology Palaeoecology33 (1–3): 157–172.

    Article  Google Scholar 

  • Emiliani, C. 1955. Pleistocene temperatures. — Journal of Geology63: 538–578.

    Google Scholar 

  • Erez, J. 1983. Calcification rates, photosynthesis and light in planktonic Foraminifera. — In: Westbroek, P. & De Jong, E.W., eds., Biomineralization and biological metal accumulation. Biological and Geological Perspectives: 307–312, Dordrecht, Holland (D. Reidel Publishing Company).

    Google Scholar 

  • Erez, J. &Luz, B. 1983. Experimental paleotemperature equation for planktonic Foraminifera. — Geochimica et Cosmochimica Acta47(6): 1025–1031.

    Article  Google Scholar 

  • Fischer, G. &Wefer, G. 1999. Use of proxies in paleoceanography. —735 p., Berlin (Springer).

    Google Scholar 

  • Hay, W.W. 1985. Potential errors in estimates of carbonate rock accumulating through geologic time. The carbon cycle and atmospheric CO2: Natural variations Archean to present. — In:Sundquist, E.T. &Broecker, W.S., eds., Natural variations in carbon dioxide and the carbon cycle. — Geophysical Monograph32: 573–583.

    Google Scholar 

  • Healy-Williams, N. 1983. Fourier shape-analysis ofGloborotalia truncatulinoides from Late Quaternary Sediments in the southern Indian Ocean. — Marine Micropaleontology8(1): 1–15.

    Article  Google Scholar 

  • Healy-Williams, N.;Ehrlich, R. &Williams, D.F. 1985. Morphometric and stable isotopic evidence for subpopulations ofGloborotalia truncatulinoides. — Journal of Foraminiferal Research15 (4): 242–253.

    Google Scholar 

  • Hemleben, C;Spindler, M. &Anderson, O.R., 1989. Modern planktonic Foraminifera. — 363 p., New York (Springer).

    Google Scholar 

  • Hemleben, C;Spindler, M.;Breitinger, I. &Deuser, W.G. 1985. Field and laboratory studies on the ontogeny and ecology of some globorotaliid species from the Sargasso Sea off Bermuda. — Journal of Foraminiferal Research15 (4): 254–272.

    Google Scholar 

  • Henrich, R. &Wefer, G. 1986. Dissolution of biogenic carbonates —effects of skeletal structure. — Marine Geology71 (3/4): 341–362.

    Article  Google Scholar 

  • Itou, M.;Ono, T.;Oba, T. &Noriki, S. 2001. Isotopic composition and morphology of livingGloborotalia scitula: a new proxy of sub-intermediate ocean carbonate chemistry. — Marine Micropaleontology42: 189–210.

    Article  Google Scholar 

  • Jansen, H. &Wolf-Gladrow, D. 2001. Carbonate dissolution in copepod guts: a numerical model. — Marine Ecology Progress Series221: 199–207.

    Article  Google Scholar 

  • Jansen, H.;Zeebe, R.E. &Wolf-Gladrow, D.A. 2002. Modeling the dissolution of settling CaCO3 in the ocean. — Global Biogeochemical Cycles16 (2): 1027, doi:10.1029/2000GB001279.

    Article  Google Scholar 

  • Kemle-von-Mücke, S. &Hemleben, C. 1999. Planktic foraminifera. — In: Boltovskoy, D., ed., South Atlantic Zooplankton: 43–73, Leiden (Backhuys Publishers).

    Google Scholar 

  • Kroon, D. &Ganssen, G., 1989. Northern Indian Ocean upwelling cells and stable isotope composition of living planktonic foraminifers. — Deep-Sea Research36: 1219–1236.

    Article  Google Scholar 

  • Kucera, M. &Darling, K.F., 2002. Cryptic species of planktonic foraminifera: their effect on palaeoceanographic reconstructions. — Philosophical Transactions of the Royal Society, London (A)360: 695–718.

    Google Scholar 

  • Lea, D.W. 1999. Trace elements in foraminiferal calcite. — In:Sen Gupta, B.S., ed., Modern Foraminifera: 259–277, Dordrecht (Kluwer Academic Publishers).

    Google Scholar 

  • Lea, D.W. 2003. Elemental and isotopic proxies of marine temperatures. — In: Holland, H.D. & Tuerekian, K.K., eds., Treatise on Geochemistry6: 365–390, Oxford (Elsevier-Pergamon).

    Google Scholar 

  • Loeblich, A.R.J. &Tappan, H. 1987. Foraminiferal genera and their Classification. — 212 p., 847 plates, New York (Van Nostrand Reinhold Company).

    Google Scholar 

  • Longhurst, A. 1998. Ecological geography of the sea. — 398 p., San Diego (Academic Press).

    Google Scholar 

  • Martinson, D.G.;Pisias, N.G.;Hays, J.D.;Imbrie, J.;Moore, T.C. &Shackleton, N.J. 1987. Age dating and the orbital theory of the Ice Ages: development of a high-resolution 0 to 300,000 year chronostratigraphy. — Quaternary Research27: 1–29.

    Article  Google Scholar 

  • Milliman, J.D. 1974. Marine Carbonates. — 375 p., New York (Springer).

    Google Scholar 

  • Milliman, J. D. 1993. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady State. — Global Biogeochemical Cycles7(4): 927–957.

    Article  Google Scholar 

  • Milliman, J.D. &Droxler, A.W. 1996. Neritic and pelagic carbonate Sedimentation in the marine environment: Ignorance is not bliss. — Geologische Rundschau85: 496–504.

    Article  Google Scholar 

  • Milliman, J.D.;Troy, P.J.;Balch, W.M.;Adams, A.K.;Li, Y.-H. &Mckenzie, F.t. 1999. Biologically mediated dissolution of calcium carbonate above the chemical lysocline? — Deep-Sea Research146 (10): 1653–1669.

    Google Scholar 

  • Mulitza, S.;Dürkoop, A.;Hale, W.;Wefer, G. &Niebler, H.S. 1997. Planktonic Foraminifera as recorders of past surface-water stratification. — Geology25 (4): 335–338.

    Article  Google Scholar 

  • Nägler, T.F.;Eisenhauer, A.;Müller, A.;Hemleben, C. &Kramers, J. 2000, The δ44Ca-temperature calibration on fossil and culturedGlobigerinoides sacculifer. New tool for reconstruction of past sea surface temperatures. — Geochemistry Geophysics Geosystems1, Paper No. 2000GC000091.

  • Nürnberg, D.;Bijma, J. &Hemleben, C. 1996. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. — Geochimica et Cosmochimica Acta60 (5): 803–814.

    Article  Google Scholar 

  • D’Orbigny, A. 1826. Tableau méthodique de la classe des Céphalopodes. — Annales des Sciences Naturelles1 (7): 245–314.

    Google Scholar 

  • D’Orbigny, A. 1839. Foraminifères. — In:de la Sagra, R., ed., Histoire physique, politique et naturelle de l’ile de Cuba. — xlviii + 224 p., Paris (Arthus Bertrand).

    Google Scholar 

  • Ortiz, J.D.;Mix, A.C. &Collier, R.W. 1995. Environmental control of living symbiotic and asymbiotic Foraminifera of the California Current. — Paleoceanography10 (6): 987–1009.

    Article  Google Scholar 

  • Owen, S.R.J. 1867. On the surface-fauna of mid-ocean. — Zoological Journal of the Linnean Society, London9: 147.

    Article  Google Scholar 

  • Parker, F.K. 1962. Planktonic foraminiferal species in Pacific Sediments. — Micropaleontology8 (2): 219–254.

    Article  Google Scholar 

  • Parker, W.K. &Jones, T.R. 1865. On some foraminifera from the North Atlantic and Arctic Oceans, including Davis Strait and Baffin’s Bay. — Philosophical Transactions of the Royal Society155: 325–441.

    Article  Google Scholar 

  • Pawlowski, J. &Holzmann, M. 2002. Molecular phylogeny of Foraminifera — areview. — European Journal of Protistology38 (1): 1–10.

    Article  Google Scholar 

  • Peeters, F.;Ivanova, E.;Conan, S.;Brummer, G.-J.;Ganssen, G.;Troelstra, S. &van Hinte, J. 1999. A size analysis of planktic Foraminifera from the Arabian Sea. — Marine Micropaleontology36: 31–63.

    Article  Google Scholar 

  • Phleger, F.B. 1960. Ecology and distribution of Recent Foraminiferida. — 297 p., Baltimore, Md. (Johns Hopkins).

    Google Scholar 

  • Reiss, Z. &Hottinger, L. 1984. The Gulf of Aqaba. Ecological Micropaleontology. — Ecological Studies50: 360 p., Berlin (Springer).

    Google Scholar 

  • Rhumbler, L. 1911. Die Foraminiferen (Thalamorphoren) der Plankton-Expedition. Erster Teil: Die allgemeinen Organisations-Verhältnisse der Foraminiferen. — Ergebnisse der Plankton-Expedition der Humbold-Stiftung (1909)3: 1–331.

    Google Scholar 

  • Rickaby, R.E.M. &Elderfield, H. 1999. Planktonic foraminiferal Cd/Ca: paleonutrients or paleotemperature. — Paleoceanography14: 293–303.

    Article  Google Scholar 

  • Rohling, E.J. &Cooke, S. 1999. Stable oxygen and carbon isotopes in foraminiferal carbonate Shells. — In:Sen Gupta, B.S., ed., Modern Foraminifera: 239–258, Dordrecht (Kluwer Academic Publilshers).

    Google Scholar 

  • Rohling, E.J.;Sprovieri, M.;Cane, T.;Casford, J.S.L.;Cooke, S.;Bouloubassi, I.;Emeis, K.C.;Schiebel, R.;Hayes, A.;Jorissen F.J. &Kroon, D. 2004. Ecological controls on planktonic foraminiferal shell chemistry: stable isotope records of eleven major species through a Mediterranean anoxic event. — Marine Micropaleontology50: 89–123.

    Article  Google Scholar 

  • Russel, A.D. &Spero, H.J. 2000. Field examination of the oceanic carbonate ion effect on stable isotopes in planktonic Foraminifera. — Paleoceanography15 (1): 43–52.

    Article  Google Scholar 

  • Sanyal, A.;Hemming, N.G.;Broecker, W.S.;Lea, D.W.;Spero, H.J. &Hanson, G.N. 1996. Oceanic pH control on the boron isotopic composition of Foraminifera: evidence from culture experiments. — Paleoceanography11 (5): 513–517.

    Article  Google Scholar 

  • Sautter, L.R. &Thunell, R.C. 1989. Seasonal succession of planktonic Foraminifera: Results from four-year time series Sediment trap experiment in the northeast Pacific. — Journal of Foraminiferal Research19 (4): 253–267.

    Google Scholar 

  • Schiebel, R. 2002. Planktic foraminiferal Sedimentation and the marine calcite budget. — Global Biogeochemical Cycles16 (4): 1065, doi:10.1029/2001GB001459.

    Article  Google Scholar 

  • Schiebel, R. &Hemleben, C. 2000. Interannual variability of planktic foraminiferal populations and test flux in the eastern North Atlantic Ocean (JGOFS). — Deep-Sea Research II47 (9/11): 1809–1852.

    Article  Google Scholar 

  • Schiebel, R.;Bijma, J. &Hemleben, C. 1997. Population dynamics of the planktic foraminiferGlobigerina bulloides from the eastern North Atlantic. — Deep-Sea Research I44: 1701–1713.

    Article  Google Scholar 

  • Schiebel, R.;Hiller, B. &Hemleben, C. 1995. Impacts of storms on recent planktic foraminiferal test production and CaCO3 flux in the North Atlantic at 47°N, 20°W (JGOFS). — Marine Micropaleontology26(1/4): 115–129.

    Article  Google Scholar 

  • Schiebel, R.;Schmuker, B.;Alves, M. &Hemleben, C. 2002. Tracking the Recent and late Pleistocene Azores Front by the distribution of planktic foraminifers. — Journal of Marine Systems37 (1/3): 213–227.

    Article  Google Scholar 

  • Schiebel, R.;Waniek, J.;Bork, M. &Hemleben, C. 2001. Planktic foraminiferal production stimulated by Chlorophyll redistribution and entrainment of nutrients. — Deep-Sea Research148 (3): 721–740.

    Google Scholar 

  • Schmuker, B. &Schiebel, R. 2002. Spatial and temporal distribution of planktic foraminifers in the eastern Caribbean. — Marine Micropaleontology46: 387–403.

    Article  Google Scholar 

  • Schott, W. 1935. Die Foraminiferen des äquatorialen Teils des Atlantischen Ozeans: Deutsche Atlantische Exped. Meteor 1925–1927. — Wissenschaftliche Ergebnisse3: 43–134.

    Google Scholar 

  • Schwager, C. 1866. Fossile Foraminiferen von Kar Nikobar: Novara Expedition 1857–1859: 187–268, Wien.

  • Simstich, J.;Sarnthein M. &Erlenkeuser, H. 2003. Paired δ18O Signals ofNeogloboquadrina pachyderma (s) andTurborotalita quinqueloba show thermal stratification structure in Nordic Seas. — Marine Micropaleontology48: 107–125.

    Article  Google Scholar 

  • Spero, H. J. 1992. Do planktic foraminifera accurately record shifts in the carbon isotopic composition of seawater CO2. — Marine Micropaleontololgy19: 275–285.

    Article  Google Scholar 

  • Spero, H. J. &Deniro, M.J. 1987. The influence of symbiont photo-synthesis on the δ18O and δ13C values of planktonic foraminiferal shell calcite. — Symbiosis4 (1/3): 213–228.

    Google Scholar 

  • Spero, H.J. &Lea, D.W. 1993. Intraspecific stable isotope variability in the planktic foraminiferGlobigerinoides sacculifer: results from laboratory experiments. — Marine Micropaleontology22 (3): 221–234.

    Article  Google Scholar 

  • Spero, H.J.;Bijma, J.;Lea, D.W. &Bemis, B.E. 1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. — Nature390 (6659): 497–500.

    Article  Google Scholar 

  • Spindler, M., 1996. On the salinity tolerance of the planktonic foraminiferNeogloboquadrina pachyderma from Antarctic sea ice. — Proceedings of the NIPR Symposium on Polar Biology9: 85–91.

    Google Scholar 

  • Spindler, M. &Dieckmann, G.S. 1986. Distribution and abundance of the planktic foraminiferNeogloboquadrina pachyderma in sea ice of the Weddell Sea (Antarctica). — Polar Biology5 (3): 185–191.

    Article  Google Scholar 

  • Spindler, M.;Hemleben, C.;Bayer, U.;Bé, A.W.H. &Anderson, O.R. 1979. Lunar periodicity of reproduction in the planktonic foraminiferHastigerina pelagica. — Marine Ecology Progress Series1 (1): 61–64.

    Article  Google Scholar 

  • Spindler, M.;Hemleben, C.;Salomons, J.B. &Smit, L.P. 1984. Feeding-behavior of some planktonic foraminifers in laboratory cultures. — Journal of Foraminiferal Research14 (4): 1–3.

    Article  Google Scholar 

  • Takahashi, K. &Bé, A.W.H. 1984. Planktonic Foraminifera: factors Controlling sinking speeds. — Deep-Sea Research31: 1477–1500.

    Article  Google Scholar 

  • Thiede, J. 1975. Distribution of foraminifera in surface waters of a coastal upwelling area. — Nature253 (5494): 712–714.

    Article  Google Scholar 

  • Thomson, W. inMurray, J. 1876. Preliminary reports to Professor Wyville Thompson, F.R. S., director of the civilian scientific staff, on work done on board the “Challenger”. — Proceedings of the Royal Society, London24: 273–323.

    Google Scholar 

  • Tolderlund, D.S. &Bé, A.W.H., 1971. Seasonal distribution of planktonic Foraminfera in the western North Atlantic. — Micropalaeontology17 (3): 297–329.

    Article  Google Scholar 

  • Vincent, E. &Berger, W.H. 1981. Planktonic Foraminifera and their use in paleoceanography. The Oceanic Lithosphere. — In:Emiliani, C, ed., The Sea7: 1025–1119.

    Google Scholar 

  • Volkmann, R. 2000. Planktic foraminifers in the outer Laptev Sea and Fram Strait — modern distribution and ecology. — Journal of Foraminiferal Research30 (3): 157–176.

    Article  Google Scholar 

  • Weyl, P.K. 1978. Micropalenotology and the ocean surface climate. —Science202 (4367): 475–481.

    Article  Google Scholar 

  • Wolf-Gladrow, D.A.;Bijma, J. &Zeebe, R.E. 1999. Model Simulation of the carbonate chemistry in the microenvironment of symbiont bearing foraminifera. — Marine Chemistry64 (3): 181–198.

    Article  Google Scholar 

  • Wolf-Gladrow, D.A.;Riebesell, U.;Burkhardt, S. &Buma, J. 1999. Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. — Tellus51B: 461–476.

    Google Scholar 

  • Zeebe, R.E. &Wolf-Gladrow, D.A. 2001. CO2 in Seawater: equilibrium, kinetics, isotopes. — 346 p., Amsterdam (Elsevier).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiebel, R., Hemleben, C. Modern planktic foraminifera. Paläontol Z 79, 135–148 (2005). https://doi.org/10.1007/BF03021758

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03021758

Keywords

Schlüsselwörter

Navigation