Skip to main content
Log in

An architecture for the vlsi design of systems for time-frequency analysis and time-varying filtering

Conception D’une Architecture VLSI pour L’analyse Temps-FréQuence et le Filtrage Variable dans le Temps

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

A flexible system for time-frequency signal analysis is presented. It is based on the S-method, which has a significant advantage in implementation since it can involve, as a key intermediate step, the Short-time Fourier transform or the Hartley transform, each widely studied and commonly used in practice. Signal invariant and signal dependent system forms are presented. Hardware design, for a fixed-point arithmetic, is well-structured and suitable for vlsi implementation. The same hardware, without additional time requirements, may be shared for the simultaneous realization of the fourth order L-Wigner distribution, as well as for the realization of the cross-terms free fourth order polynomial Wigner-Ville distribution. This possibility makes the designed hardware suitable for wide range of the applications. The proposed hardware is applied to the realization of time-varying filtering, as well. Finally, it has been implemented with fpga chips (Field Programmable Gate Array) in order to verify the results on real devices.

Résumé

Cet article présente un système souple pour l’analyse d’un signal en temps et en fréquence. Ce système est fondé sur la méthode S, ce qui facilite la réalisation grâce àl’emploi de la transformation de Fourier àcourt terme et de la transformation de Hartley, bien connues et largement en usage. L’article considère deux variantes suivant que la fenêtre dépend ou non du signal. La conception du matériel, en arithmétique àvirgule fixe, convient bien àune réalisation par vlsi. Le même matériel peut être utilisé simultanément et sans délai supplémentaire pour la réalisation d’une distribution L-Wigner du quatrième ordre et celle d’une distribution Wigner-Ville polynomiale d’ordre quatre. Le matériel proposé est appliqué àla réalisation de filtrages variables dans le temps. Les résultats ont pu être vérifiés grâce àune réalisation àbase de puces fpga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proceedings of the IEEE (1996), special issue on Time-Frequency Analysis,84, n° 9.

  2. Ackroyd (M.H.). Short time spectra and time-frequency energy distribution.J. Acoust. Soc. Am. (1970),50, pp. 1229–1231.

    Article  Google Scholar 

  3. Amin (M.G.), Spectral smoothing and recursion based on the nonstationarity of the autocorrelation function.IEEE Trans, on Signal Processing (1993),41, n° 2, pp. 930–934.

    Article  MathSciNet  Google Scholar 

  4. Amin (M.G.), A new approach to recursive Fourier transform,Proc. Ieee (1987),75, pp. 1357–1358.

    Google Scholar 

  5. Amin (M.G.), Feng (K.D.). Short time Fourier transform using cascade filter structures.ieee Trans. on Circuits and Systems-II (1995),42, n° 10, pp. 631–641.

    Article  Google Scholar 

  6. Boashash (B.), Black (J.B.), An efficient real time implementation of the Wigner-Ville distribution.ieee Trans. Acoust., Speech, Signal Processing (1987),35, n° 11, pp. 1611–1618.

    Article  Google Scholar 

  7. Boashash (B.), O’Shea (P.), Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra.ieee Trans. on Signal Processing (1994),42, n° 1, pp. 216–220.

    Article  Google Scholar 

  8. Boashash (B.), Ristic (B.), Polynomial time-frequency distributions and time-varying higher order spectra: Applications to analysis of multicomponent FM signals and to treatment of multiplicative noise.Signal Processing (1998),67, n° 1, pp. 1–23.

    Article  MATH  Google Scholar 

  9. Boudreaux-Bartels (G.F.), Parks (T.W.), Time-varying filtering and signal estimation using the Wigner distribution.IEEE Trans. Acoust, Speech, Signal Processing (1986),34, n° 6, pp. 442–451.

    Article  MathSciNet  Google Scholar 

  10. Bracewell (R.N.), The fast Hartley transform,Proc. ieee (1984),72, pp. 1010–1018.K.J.R.

    Article  Google Scholar 

  11. Cohen (L.), Time-frequency distributions - a review.Proc. ieee (1989),77, pp. 941–981.

    Article  Google Scholar 

  12. Costa (A.H.), Boudreaux-Bartels (G.F.). A comparative study of alias-free time-frequency representations.Proc. of the Int. Symp. tftsa (Philadelphia 1994), pp. 76-79.

  13. Flex 10K Embedded Programmable Logic Device Family.Altera Corporation, data sheet, Version 4.1 (2001).

    Google Scholar 

  14. Goncalves (P.), Baraniuk (R.G.), Pseudo affine Wigner distributions: Definition and kernel formulation.ieee Trans. on Signal Processing (1998),46, n° 6, pp. 1505–1517.

    Article  MATH  MathSciNet  Google Scholar 

  15. Hlawatsch (F.), Broudreaux-Bartels (G.F.), Linear and quadratic time-frequency signal representation.ieee Signal Processing Magazine (1992), pp. 21–67.

  16. Ivanović (V.), Stanković (LJ.), Petranović (D.), Finite register length effects in implementation of distributions from the Cohen class.ieee Trans. on Signal Processing (1998),46, n° 7, pp. 2035–2041.

    Article  Google Scholar 

  17. Jonckheere (E.A.), Ma (C.), Split-radix fast Hartley transform in one and two dimension.IEEE Trans, on Signal Processing (1991),39, n° 2, pp. 499–503.

    Article  MATH  Google Scholar 

  18. Kozek (W.), Time-frequency signal processing based on the Wigner-Weyl framework.Signal Processing (1992),29, n° 1, pp. 77–92.

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu (K.J.R.), Novel parallel architectures for Short-time Fourier transform.ieee Trans. on Circuits and Systems-II (1993),40, n° 12, pp. 786–789.

    Article  Google Scholar 

  20. Liu (K.J.R.), Chiu (C. T.), Unified parallel lattice structures for time-recursive discrete cosine/sine/Hartley transforms.ieee Trans. on Signal Processing (1993),41, n° 3, pp. 1357–1377.

    Article  MATH  Google Scholar 

  21. Maharatna (K.), Dhar (A.S.), Banerjee (S.), A vlsi array architecture for realization of dft, dht, dct and dst.Signal Processing (2001),81, n° 9, pp. 1813–1822.

    Article  MATH  Google Scholar 

  22. Matz (G.), Hlawatsch (F.), Kozek (W.). Generalized evolutionary spectral analysis and the Weyl spectrum of nonstationary random processes.IEEE Trans. on Signal Processing (1997),45, n° 6, pp. 1520–1534.

    Article  MATH  Google Scholar 

  23. Oppenheim (A.), Schafer (R.W.), Digital Signal Processing.Prentice-Hall (1975), pp. 404–464.

  24. Papoulis (A.), Signal Analysis.McGraw-Hill Book Company (1977).

  25. Petranović (D.), Stanković (S.), Stanković (LJ.), Special purpose hardware for time-frequency analysis.Electronics Letters (1997),33, n° 6, pp. 464–466.

    Article  Google Scholar 

  26. Ristic (B.), Boashash (B.), Relationship between the polynomial and higher order Wigner-Ville distributions.ieee Signal Processing Letters (1995),2, n° 12, pp. 227–229.

    Article  Google Scholar 

  27. Scharf (L.L.), Friedlander (B.), Toeplitz and Hankel kernels for estimating time-varying spectra of discrete-time random processes.ieee Trans. on Signal Processing (2001),49, n° 1, pp. 179–189.

    Article  MathSciNet  Google Scholar 

  28. Shenoy (R.G.), Parks (T.W.), The Weyl correspondence and time-frequency analysis.ieee Trans. on Signal Processing (1994),42, n° 2, pp. 318–331.

    Article  Google Scholar 

  29. Stanković (LJ.), A method for time-frequency analysis.ieee Trans. on Signal Processing (1994),42, n° 1, pp. 225–229.

    Article  Google Scholar 

  30. Stanković (LJ.), A method for improved energy concentration in the time-frequency signal analysis using the L-Wigner distribution.ieee Trans. on Signal Processing (1995),43, n° 5, pp. 1262–1268.

    Article  Google Scholar 

  31. Stanković (LJ.), On the time-frequency analysis based filtering.Annales des Telecommunications (2000),55, n° 5-6, pp. 216–225.

    Google Scholar 

  32. Stanković (LJ.), Ivanović (V.), Petrović (Z.), Unified approach to the noise analysis in the Wigner distribution and Spectrogram.Annales des Telecommunications (1996),51, n° 11-12, pp. 585–594.

    Google Scholar 

  33. Stanković (LJ.), Stanković (S.), Djurović (I.), An architecture for realization of the cross-terms free polynomial Wigner-Ville distributions.Proc. of the Int.Conf. assp (Munich 1997).

  34. Stankovkić (S.), About time-variant filtering of speech signals with time-frequency distributions for hands-free telephone systems.Signal Processing (2000),80, n° 9, pp. 1777–1785.

    Article  Google Scholar 

  35. Stanković (S.), Stanković (LJ.), An architecture for the realization of a system for time-frequency analysis.ieee Trans. on Circuits and Systems-II (1997),44, n° 7, pp. 600–604.

    Article  MATH  Google Scholar 

  36. Unser (M.), Recursion in short time signal analysis.Signal Processing (1983),5, n° 5, pp. 229–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srdjan Stanković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanković, S., Stanković, L., Ivanović, V. et al. An architecture for the vlsi design of systems for time-frequency analysis and time-varying filtering. Ann. Télécommun. 57, 974–995 (2002). https://doi.org/10.1007/BF03005257

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03005257

Key words

Mots clés

Navigation