Skip to main content
Log in

The Role of Apoptosis in the Pathogenesis of the Myelodysplastic Syndromes

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The paradoxical occurrence of peripheral cytopenias despite a normo/hypercellular marrow in myelodysplastic syndromes (MDS) has been attributed to excessive intramedullary hematopoietic cell apoptosis. It has also been postulated that abrogation of programmed cell death (PCD) may underlie MDS transformation to acute myeloid leukemia (AML). Despite overwhelming evidence for a role of aberrant apoptosis in myelodysplasia, the molecular mechanisms responsible for such changes have not been elucidated. This paper summarizes current evidence implicating a role for altered PCD in MDS and outlines potential cellular mechanisms whereby hematopoietic progenitor cell apoptosis may be dysregulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mufti GJ, Galton DA. Myelodysplastic syndromes: natural history and features of prognostic importance.Clin Haematol. 1986;15:953–971.

    PubMed  CAS  Google Scholar 

  2. Yoshida Y. Hypothesis: apoptosis may be the mechanism responsible for the premature intramedullary cell death in the myelodys-plastic syndrome.Leukemia. 1993;7:144–146.

    PubMed  CAS  Google Scholar 

  3. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.Br J Cancer. 1972;26:239–257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages.J Immunol. 1992;148:2207–2216.

    PubMed  CAS  Google Scholar 

  5. Martin SJ, Cotter TG. Ultraviolet B irradiation of human leukemia HL-60 cells in vitro induces apoptosis.Int J Radiat Biol. 1991;59:1001–1016.

    Article  CAS  PubMed  Google Scholar 

  6. Hickman JA. Apoptosis induced by anticancer drugs.Cancer Metast Rev. 1992;11:121–139.

    Article  CAS  Google Scholar 

  7. Laster SM, Wood JG, Gooding LR. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis.J Immunol. 1988;141:2629–2634.

    PubMed  CAS  Google Scholar 

  8. Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family.Cell. 1993;75:1169–1178.

    Article  PubMed  CAS  Google Scholar 

  9. Williams GT, Smith CA, Spooncer E, Dexter TM, Taylor DR. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis.Nature. 1990;343:76–79.

    Article  PubMed  CAS  Google Scholar 

  10. Thornberry NA, Lazebnik Y. Caspases: enemies within.Science. 1998;281:1312–1316.

    Article  PubMed  CAS  Google Scholar 

  11. Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex.Cell. 1996;85:817–827.

    Article  PubMed  CAS  Google Scholar 

  12. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death.Cell. 1996;85:803–815.

    Article  PubMed  CAS  Google Scholar 

  13. Li P, Nijhawan D, Budihardjo I, et al. Cytochome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade.Cell. 1997;91:479–489.

    Article  PubMed  CAS  Google Scholar 

  14. Pan G, Humke EW, Dixit VM. Activation of caspases triggered by cytochrome c in vitro.FEBS Lett. 1998;426:151–154.

    Article  PubMed  CAS  Google Scholar 

  15. Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta.Nature. 2000;403:98–103.

    Article  PubMed  CAS  Google Scholar 

  16. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates and functions during apoptosis.Ann Rev Biochem. 1999;68:383–424.

    Article  PubMed  CAS  Google Scholar 

  17. Nagata S, Golstein P. The Fas death factor.Science. 1995;267:1449–1456.

    Article  PubMed  CAS  Google Scholar 

  18. Itoh N, Nagata S. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen.J Biol Chem. 1993;268:10932–10937.

    PubMed  CAS  Google Scholar 

  19. Banner DW, D’Arcy A, Janes W, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation.Cell. 1993;73:431–435.

    Article  PubMed  CAS  Google Scholar 

  20. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD,a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis.Cell. 1995;81:505–512.

    Article  PubMed  CAS  Google Scholar 

  21. Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation.Cell. 1995;81:495–504.

    Article  PubMed  CAS  Google Scholar 

  22. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-depend-ent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex.Immunity. 1996;4:387–396.

    Article  PubMed  CAS  Google Scholar 

  23. Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways.Cell. 1996;84:299–308.

    Article  PubMed  CAS  Google Scholar 

  24. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-depend-ent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor.EMBO J. 1995;14:5579–5588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Binder C, Schulz M, Hiddemann W, Oellerich M. Capsase activation and induction of inducible nitric oxide-synthase during TNF alpha-triggered apoptosis.Anticancer Res. 1999;19:1715–1720.

    PubMed  CAS  Google Scholar 

  26. Green DR, Reed JC. Mitochondria and apoptosis.Science. 1998;281:1309–1312.

    Article  PubMed  CAS  Google Scholar 

  27. Liu X, Kim CN, Yang J, Jemmerson, R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c.Cell. 1996;86:147–157.

    Article  PubMed  CAS  Google Scholar 

  28. Zou H, Henzel WJ, Liu XS, Lutschg A, Wang XD. Apaf-1, a human protein homologous to C-elegans CED-4, participates in cytochrome c-dependent activation of caspase-3.Cell. 1997;90:405–413.

    Article  PubMed  CAS  Google Scholar 

  29. Koseki T, Inohara N, Chen, S, Nunez G. ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases.Proc Natl Acad Sci U S A. 1998;95:5156–5160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Koseki T, Inohara N, Chen, S, et al. CIPER, a novel NF kappaB-activating protein containing a caspase-recruitment domain with homology to Herpesvirus-2 protein E10.J Biol Chem. 1999;274:9955–9961.

    Article  PubMed  CAS  Google Scholar 

  31. Johnson DE. Programmed cell death regulation: basic mechanisms and therapeutic opportunities.Leukemia. 2000;14:1340–1344.

    Article  CAS  PubMed  Google Scholar 

  32. Marchetti P, Castedo M, Susin SA, et al. Mitochondrial permeability transition is a central coordinating event of apoptosis.J Exp Med. 1996;184:1155–1160.

    Article  PubMed  CAS  Google Scholar 

  33. Skulachev VP. Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell.FEBS Lett. 1996;397:7–10.

    Article  PubMed  CAS  Google Scholar 

  34. Desagher S, Osen-Sand A, Nichols A, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis.J Cell Biol. 1999;44:891–901.

    Article  Google Scholar 

  35. Shimizu S, Tsujimoto Y. Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity.Proc Natl Acad Sci U S A. 2000;97:577–582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mancini M, Nicholson DW, Roy S, et al. The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling.J Cell Biol. 1998;140:1485–1495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Susin SA, Lorenzo HK, Zamzami N, et al. Mitochondrial release of caspase-2 and -9 during the apoptotic process.J Exp Med. 1999;189:381–394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Susin SA, Lorenzo HK, Zamzami,N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor.Nature. 1999;397:441–446.

    Article  PubMed  CAS  Google Scholar 

  39. Lorenzo HK, Susin SA, Penninger JM, Kroemer G. Apoptosis-inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death.Cell Death Diff. 1999;6:516–524.

    Article  CAS  Google Scholar 

  40. Yang E, Korsmeyer SJ. Molecular thanatopsis: a discourse on the BCL2 family and cell death.Blood. 1996;88:386–401.

    PubMed  CAS  Google Scholar 

  41. Reed JC. Bcl-2 and the regulation of programmed cell death.J Cell Biol. 1994;124:1–5.

    Article  PubMed  CAS  Google Scholar 

  42. Muchmore SW, Sattler M, Liang H, et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death.Nature. 1996;381;335–341.

    Article  PubMed  CAS  Google Scholar 

  43. Minn AJ, Velez P, Schendel SL, et al. Bcl-x(L) forms an ion channel in synthetic lipid membranes.Nature. 1997;385:353–357.

    Article  PubMed  CAS  Google Scholar 

  44. Schendel SL, Xie ZH, Montal MO, Matsuyama S, Montal M, Reed JC. Channel formation by antiapoptotic protein Bcl-2.Proc Natl Acad Sci U S A. 1997;94:5113–5118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jurgensmeier JM, Xie Z, Devereaux Q, Ellerby L, Bredesden D, Reed JC. Bax directly induces release of cytochrome c from isolated mitochondria.Proc Natl Acad Sci U S A. 1998;95:4997–5002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death.Cell. 1993;74:609–619.

    Article  PubMed  CAS  Google Scholar 

  47. Kharbanda S, Pandey P, Schofield L, et al. Role for Bcl-xL as an inhibitor of cytosolic cytochrome C accumulation in DNA damage-induced apoptosis.Proc Natl Acad Sci U S A. 1997;94:6939–6942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Reed JC. Double identity for proteins of the Bcl-2 family.Nature. 1997;387:773–776.

    Article  PubMed  CAS  Google Scholar 

  49. Hu Y, Benedict MA, Wu D, Inohara N, Nunez G. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation.Proc Natl Acad Sci U S A. 1998;95:4386–4391.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Naumovski L, Cleary ML. The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M.Mol Cell Biol. 1996;16:3884–3892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wang HG, Rapp UR, Reed JC. Bcl-2 targets the protein kinase Raf-1 to mitochondria.Cell. 1996;87:629–638.

    Article  PubMed  CAS  Google Scholar 

  52. Gottlieb RA, Nordberg J, Skowronski E, Babior BM. Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification.Proc Natl Acad Sci U S A. 1996;93:654–658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Matsuyama S, Xu Q, Velours J, Reed JC. The mitochondrial F0F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells.Mol Cell. 1998;1:327–336.

    Article  PubMed  CAS  Google Scholar 

  54. Sheikh MS, Fornace AJ Jr. Death and decoy receptors and p53-mediated apoptosis.Leukemia. 2000;14:1509–1513.

    Article  PubMed  CAS  Google Scholar 

  55. MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, Alnemri ES. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL.J Biol Chem. 1997;272:25417–25420.

    Article  PubMed  CAS  Google Scholar 

  56. Marsters SA, Sheridan JP, Pitti RM, et al. A novel receptor for Apo2L/TRAIL contains a truncated death domain.Curr Biol. 1997;7:1003–1006.

    Article  PubMed  CAS  Google Scholar 

  57. Schneider P, Bodmer JL, Thome M, Hofmann K, Holler N, Tschopp J. Characterization of two receptors for TRAIL.FEBS Lett. 1997;416:329–334.

    Article  PubMed  CAS  Google Scholar 

  58. Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors.Science. 1997;277:818–821.

    Article  PubMed  CAS  Google Scholar 

  59. Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL.J Biol Chem. 1998;273:14363–14367.

    Article  PubMed  CAS  Google Scholar 

  60. Pitti RM, Marsters SA, Lawrence DA, et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer.Nature. 1998;396:699–703.

    Article  PubMed  CAS  Google Scholar 

  61. Sato T, Irie S, Kitada S, Reed JC. FAP-1: a protein tyrosine phosphatase that associates with Fas.Science. 1995;268:411–415.

    Article  PubMed  CAS  Google Scholar 

  62. Condorelli G, Vigliotta G, Cafieri A, et al. PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis.Oncogene. 1999;18:4409–4415.

    Article  PubMed  CAS  Google Scholar 

  63. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP.Nature. 1997;388:190–195.

    Article  PubMed  CAS  Google Scholar 

  64. Srinivasula SM, Ahmad M, Ottilie S, et al. FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis.J Biol Chem. 1997;272:18542–18545.

    Article  PubMed  CAS  Google Scholar 

  65. Jiang Y, Woronicz JD, Liu W, Goeddel DV. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains.Science. 1999;283:543–546.

    Article  PubMed  CAS  Google Scholar 

  66. Duckett CS, Nava VE, Gedrich RW, et al. A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors.EMBO J. 1996;15:2685–2694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Liston P, Roy N, Tamai K, et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes.Nature. 1996:379;349–353.

    Article  PubMed  CAS  Google Scholar 

  68. Uren AG, Pakusch M, Hawkins CJ, Puls KL, Vaux DL. Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors.Proc Natl Acad Sci U S A. 1996;93:4974–4978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Seol DW, Billiar TR. A caspase-9 variant missing the catalytic siteis an endogenous inhibitor of apoptosis.J Biol Chem. 1999;274:2072–2076.

    Article  PubMed  CAS  Google Scholar 

  70. Srinivasula SM, Ahmad M, Guo Y, et al. Identification of an endogenous dominant-negative short isoform of caspase-9 that can regulate apoptosis.Cancer Res. 1999;59:999–1002.

    PubMed  CAS  Google Scholar 

  71. Clark DM, Lampert IA. Apoptosis is a common histopathological finding in myelodysplasia: the correlate of ineffective haemato-poiesis.Leuk Lymphoma. 1990;2:415–418.

    Article  PubMed  CAS  Google Scholar 

  72. Hatfill SJ, Fester ED, Steytler JG. Apoptotic megakaryocyte dysplasia in the myelodysplastic syndromes.Hem Pathol. 1992;6:87–93.

    CAS  Google Scholar 

  73. Bogdanovic AD, Trpinac DP, Jankovic GM, Bumbasirevic VZ, Obradovic M, Colovic MD. Incidence and role of apoptosis in myelodysplastic syndrome: morphological and ultrastructural assessment.Leukemia. 1997;11;656–659.

    Article  PubMed  CAS  Google Scholar 

  74. Greenberg PL, Ginzton N, Rajapaksa R, Tong CR, Han JH. Apoptosis in myelodysplastic syndrome (MDS) [abstract].Blood. 1994;84:159a.

    Google Scholar 

  75. Raza A, Gezer S, Mundle S, et al. Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes.Blood. 1995;86:268–2676.

    PubMed  CAS  Google Scholar 

  76. Rajapaksa R, Ginzton N, Rott LS, Greenberg PL. Altered onco-protein expression and apoptosis in myelodysplastic syndrome marrow cells.Blood. 1996;88:4275–4287.

    PubMed  CAS  Google Scholar 

  77. Kawabata H, Anzai N, Ueda Y, et al. High levels of Ca(2+)-inde-pendent endonuclease activity capable of producing nucleosomal-size DNA fragmentation in non-adherent marrow mononuclear cells from patients with myelodysplastic syndromes and acute myelogenous leukemia.Leukemia. 1996;10:67–73.

    PubMed  CAS  Google Scholar 

  78. Hellstrom-Lindberg E, Kanter-Lewensohn L, Ost A. Morphological changes and apoptosis in bone marrow from patients with myelodysplastic syndromes treated with granulocyte-CSF and ery-thropoietin.Leuk Res. 1997;21:415–425.

    Article  PubMed  CAS  Google Scholar 

  79. Ali A, Mundle SD, Ragasa D, et al. Sequential activation of cas-pase-1 and caspase-3-like proteases during apoptosis in myelodys-plastic syndromes.J Hematother Stem Cell Res. 1999;8:343–856.

    Article  PubMed  CAS  Google Scholar 

  80. Tsoplou P, Kouraklis-Symeonidis A, Thanopoulou E, Zikos P, Orphanos V, Zoumbos NC. Apoptosis in patients with myelodys-plastic syndromes: differential involvement of marrow cells in “good” versus “poor” prognosis patients and correlation with apoptosis-related genes.Leukemia. 1999;13:1554–1563.

    Article  PubMed  CAS  Google Scholar 

  81. Kurotaki H, Tsushima Y, Nagai K, Yagihashi S. Apoptosis, bcl-2 expression and p53 accumulation in myelodysplastic syndrome, myelodysplastic-syndrome-derived acute myelogenous leukemia and de novo acute myelogenous leukemia.Acta Haematologica. 2000;102:115–123.

    Article  PubMed  CAS  Google Scholar 

  82. Anzai N, Kawabata H, Hirama T, et al. Marked apoptosis of human myelomonocytic cell line P39. Significance of cellular differentiation.Leukemia. 1994;8:446–453.

    PubMed  CAS  Google Scholar 

  83. Darzynkiewicz Z, Bedner E, Traganos F, Murakami T. Critical aspects in the analysis of apoptosis and necrosis.Human Cell. 1998;11:3–12.

    PubMed  CAS  Google Scholar 

  84. Lepelley P, Campergue L, Grardel N, Preudhomme C, Cosson A, Fenaux P. Is apoptosis a massive process in myelodysplastic syndromes?Br J Haematol. 1996;95:368–371.

    Article  PubMed  CAS  Google Scholar 

  85. Shetty V, Hussaini S, Broady-Robinson L, et al. Intramedullary apoptosis of hematopoietic cells in myelodysplastic syndrome patients can be massive: apoptotic cells recovered from high-density fraction of bone marrow aspirates.Blood. 2000;96:1388–1392.

    PubMed  CAS  Google Scholar 

  86. Parker JE, Fishlock KL, Czepulkowski B, Mijovic A, Pagliuca A, Mufti GJ. “Low risk” myelodysplastic syndrome (MDS) is associated with excessive apoptosis and an increased ratio of proversus anti-apoptotic Bcl-2 related proteins.Br J Haematol. 1998;103:1075–1082.

    Article  PubMed  CAS  Google Scholar 

  87. Greenberg PL. Apoptosis and its role in the myelodysplastic syndromes: implications for disease natural history and treatment.Leuk Res. 1998;22:1123–1136.

    Article  PubMed  CAS  Google Scholar 

  88. Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A. The role of apoptosis, proliferation and the Bcl-2 related proteins in the myelodysplastic syndromes (MDS) and acute myeloid leukaemia secondary to MDS (MDS-AML).Blood. 2000;96:3932–3938.

    PubMed  CAS  Google Scholar 

  89. Clark BR, Gallagher JT, Dexter TM. Cell adhesion in the stromal regulation of haemopoiesis.Baillieres Clin Haem. 1992;5:619–652.

    Article  CAS  Google Scholar 

  90. Marsh JC, Chang J, Testa NG, Hows JM, Dexter TM. In vitro assessment of marrow “stem cell” and stromal cell function in aplastic anaemia.Br J Haematol. 1991;78:258–267.

    Article  PubMed  CAS  Google Scholar 

  91. Tuzuner N, Cox C, Rowe JM, Watrous D, Bennett JM. Hypocellular myelodysplastic syndromes (MDS): new proposals.Br J Haematol. 1995;91:612–617.

    Article  PubMed  CAS  Google Scholar 

  92. Coutinho LH, Geary CG, Chang J, Harrison C, Testa NG. Functional studies of bone marrow haemopoietic and stromal cells in the myelodysplastic syndrome (MDS).Br J Haematol. 1990;75:16–25.

    Article  PubMed  CAS  Google Scholar 

  93. Silverman LR, Zinzar S, Holland JF. Biological consequences of stromal abnormalities in the myelodysplastic syndrome (MDS): its influence on the hematopoietic dysregulation [abstract].Leuk Res. 1997;21:S20.

    Article  Google Scholar 

  94. Aizawa S, Nakano M, Iwase O, et al. Bone marrow stroma from refractory anemia of myelodysplastic syndrome is defective in its ability to support normal CD34-positive cell proliferation and differentiation in vitro.Leuk Res. 1999;23:239–246.

    Article  PubMed  CAS  Google Scholar 

  95. Aizawa S, Hiramoto M, Hoshi H, Toyama K, Shima D, Handa H. Establishment of stromal cell line from an MDS RA patient which induced an apoptotic change in hematopoietic and leukemic cells in vitro.Exp Hematol. 2000;28:148–155.

    Article  PubMed  CAS  Google Scholar 

  96. List AF, Glinsmann-Gibson B, Spier C, Taetle R. In vitro and in vivo response to cyclosporin-A in myelodysplastic syndromes: identification of a hypocellular subset responsive to immune suppression [abstract].Blood. 1992;80:28a.

    Google Scholar 

  97. Goossens V, Grooten J, De Vos K, Fiers W. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity.Proc Natl Acad Sci U S A. 1995;92:8115–8119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Peddie CM, Wolf R, McLellan LI, Collins AR, Bowen DT. Oxidative DNA damage in CD34+ myelodysplastic cells is associated with intracellular redox changes and elevated plasma tumour necrosis factor-a concentration.Br J Haematol. 1997;99:625–631.

    Article  PubMed  CAS  Google Scholar 

  99. Verhoef GE, De Schouwer P, Ceuppens JL, Van Damme J, Goossens W, Boogaerts MA. Measurement of serum cytokine levels in patients with myelodysplastic syndromes.Leukemia. 1992;6:1268–1272.

    PubMed  CAS  Google Scholar 

  100. Kitagawa M, Saito I, Kuwata T, et al. Overexpression of tumor necrosis factor (TNF)-a and interferon (IFN)-γ by bone marrow cells from patients with myelodysplastic syndromes.Leukemia. 1997;11:2049–2054.

    Article  PubMed  CAS  Google Scholar 

  101. Gersuk GM, Beckham C, Loken MR, et al. A role for tumour necrosis factor-a, Fas and Fas-Ligand in marrow failure associated with myelodysplastic syndrome.Br J Haematol. 1998;103:176–188.

    Article  CAS  PubMed  Google Scholar 

  102. Mundle SD, Reza S, Ali A, et al. Correlation of tumor necrosis factor alpha (TNF alpha) with high Caspase 3-like activity in myelodysplastic syndromes.Cancer Lett. 1999;140:201–207.

    Article  PubMed  CAS  Google Scholar 

  103. Deeg HJ, Beckham C, Loken MR, et al. Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndrome.Leuk Lymphoma. 2000;37:405–414.

    Article  PubMed  CAS  Google Scholar 

  104. Musto P, Matera R, Minervini MM, et al. Low serum levels of tumor necrosis factor and interleukin-1 beta in myelodysplastic syndromes responsive to recombinant erythropoietin.Haemato-logica. 1994;79:265–268.

    CAS  Google Scholar 

  105. Stasi R, Brunetti M, Bussa S, et al. Serum levels of tumour necrosis factor-alpha predict response to recombinant human erythropoietin in patients with myelodysplastic syndrome.Clin Lab Haematol. 1997;19:197–201.

    Article  PubMed  CAS  Google Scholar 

  106. Shetty V, Mundle S, Alvi S, et al. Measurement of apoptosis, proliferation and three cytokines in 46 patients with myelodysplastic syndromes.Leuk Res. 1996;20:891–900.

    Article  PubMed  CAS  Google Scholar 

  107. Reza S, Dar S, Andric T, et al. Biologic characteristics of 164 patients with myelodysplastic syndromes.Leuk Lymphoma. 1999;33:281–287.

    Article  PubMed  CAS  Google Scholar 

  108. Raza A, Qawi H, Lisak L, et al. Patients with myelodysplastic syndromes benefit from palliative therapy with amifostine, pentoxi-fylline, and ciprofloxacin with or without dexamethasone.Blood. 2000;95:1580–1587.

    PubMed  CAS  Google Scholar 

  109. Maurer AB, Ganser A, Buhl R, et al. Restoration of impaired cytokine secretion from monocytes of patients with myelodysplastic syndromes after in vivo treatment with GM-CSF or IL-3.Leukemia. 1993;7:1728–1733.

    PubMed  CAS  Google Scholar 

  110. Bowen D, Yancik S, Bennett L, Culligan D, Resser K. Serum stem cell factor concentration in patients with myelodysplastic syndromes.Br J Haematol. 1993;85:63–66.

    Article  PubMed  CAS  Google Scholar 

  111. Visani G, Zauli G, Tosi P, et al. Impairment of GM-CSF production in myelodysplastic syndromes.Br J Haematol. 1993;84:227–231.

    Article  PubMed  CAS  Google Scholar 

  112. Itoh N, Yonehara S, Ishii A, et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis.Cell. 1991;66:233–243.

    Article  PubMed  CAS  Google Scholar 

  113. Miyawaki T, Uehara T, Nibu R, et al. Differential expression of apoptosis-related Fas antigen on lymphocyte subpopulations in human peripheral blood.J Immunol. 1992;149:3753–3758.

    PubMed  CAS  Google Scholar 

  114. Leithauser F, Dhein J, Mechtersheimer G, et al. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells.Lab Invest. 1993;69:415–429.

    PubMed  CAS  Google Scholar 

  115. Liles WC, Kiener PA, Ledbetter JA, Aruffo A, Klebanoff SJ. Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: implications for the regulation of apoptosis in neutrophils.J Exp Med. 1996;184:429–440.

    Article  CAS  PubMed  Google Scholar 

  116. Moller P, Henne C, Leithauser F, et al. Coregulation of the APO-1 antigen with intercellular adhesion molecule-1 (CD54) in tonsillar B cells and coordinate expression in follicular center B cells and in follicle center and mediastinal B-cell lymphomas.Blood. 1993;81:2067–2075.

    PubMed  CAS  Google Scholar 

  117. Maciejewski J, Selleri C, Anderson S, Young NS. Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro.Blood. 1995;85:3183–3196.

    CAS  PubMed  Google Scholar 

  118. Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. A role for CD95 ligand in preventing graft rejection.Nature. 1995;377:630–632.

    Article  PubMed  CAS  Google Scholar 

  119. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege.Science. 1995;270:1189–1192.

    Article  PubMed  CAS  Google Scholar 

  120. Kitagawa M, Yamaguchi S, Takahashi M, et al. Localization of Fas and Fas ligand in bone marrow cells demonstrating myelodysplasia.Leukemia. 1998;12:486–492.

    Article  CAS  PubMed  Google Scholar 

  121. Bouscary D, De Vos J, Guesnu M, et al. Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes.Leukemia. 1997;11:839–845.

    Article  PubMed  CAS  Google Scholar 

  122. Lepelley P, Grardel N, Erny O, et al. Fas/APO-1 (CD95) expression in myelodysplastic syndromes.Leuk Lymphoma. 1998;30:307–312.

    Article  PubMed  CAS  Google Scholar 

  123. Mundle SD, Mativi BY, Bagai K, et al. Spontaneous down-regulation of Fas-associated phosphatase-1 may contribute to excessive apoptosis in myelodysplastic marrows.Int J Hematol. 1999;70:83–90.

    CAS  PubMed  Google Scholar 

  124. O’Connell J, O’Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand.J Exper Med. 1996;184:1075–1082.

    Article  Google Scholar 

  125. Hahne M, Rimoldi D, Schroter M, et al. Melanoma cell expression of Fas (Apo-1/CD95) ligand: implications for tumor immune escape.Science. 1996;274:1363–1366.

    Article  PubMed  CAS  Google Scholar 

  126. Gupta P, Niehans GA, LeRoy SC, et al. Fas ligand expression in the bone marrow in myelodysplastic syndromes correlates with FAB subtype and anemia, and predicts survival.Leukemia. 1999;13:44–53.

    Article  PubMed  CAS  Google Scholar 

  127. Mundle SD, Venugopal P, Cartlidge JD, et al. Indication of an involvement of interleukin-1 beta converting enzyme-like protease in intramedullary apoptotic cell death in the bone marrow of patients with myelodysplastic syndromes.Blood. 1996;88:2640–2647.

    PubMed  CAS  Google Scholar 

  128. Campos L, Sabido O, Viallet A, Piselli S, Guyotat D. Implication of ICE and CPP32 in the growth defects of committed progenitors from myelodysplastic syndromes [abstract].Blood. 1997;90:521a.

    Google Scholar 

  129. Bouscary D, Chen YL, Guesnu M, et al. Activity of the caspase-3/CPP32 enzyme is increased in “early stage” myelodysplastic syndromes with excessive apoptosis, but caspase inhibition does not enhance colony formation in vitro.Exp Hematol. 2000;28:784–791.

    Article  PubMed  CAS  Google Scholar 

  130. Boudard D, Sordet O, Vasselon C, et al. Expression and activity of caspases 1 and 3 in myelodysplastic syndromes.Leukemia. 2000;14:2045–2051.

    Article  PubMed  CAS  Google Scholar 

  131. Delia D, Aiello A, Soligo D, et al. bcl-2 proto-oncogene expression in normal and neoplastic human myeloid cells.Blood. 1992;79;1291–1298.

    PubMed  CAS  Google Scholar 

  132. Ter-Harmsel B, Smedts F, Kuijpers J, Jeunink M, Trimbos B, Ramaekers F. BCL-2 immunoreactivity increases with severity of CIN: a study of normal cervical epithelia, CIN, and cervical carcinoma.J Pathol. 1996;179:26–30.

    Article  PubMed  CAS  Google Scholar 

  133. Krajewska M, Krajewski S, Epstein JI, et al. Immunohistochemical analysis of bcl-2, bax, bcl-x, and mcl-1 expression in prostate cancers.Am J Pathol. 1996;148:1567–1576.

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Leiter U, Schmid RM, Kaskel P, Peter RU, Krahn G. Antiapoptotic bcl-2 and bcl-xL in advanced malignant melanoma.Arch Dermatol Research. 2000;292:225–232.

    Article  CAS  Google Scholar 

  135. Aguilar-Santelises M, Rottenberg ME, Lewin N, Mellstedt H, Jondal M. Bcl-2, Bax and p53 expression in B-CLL in relation to in vitro survival and clinical progression.Int J Cancer. 1996;69:114–119.

    Article  PubMed  CAS  Google Scholar 

  136. Pepper C, Hoy T, Bentley DP. Bcl-2/Bax ratios in chronic lymphocytic leukaemia and their correlation with in vitro apoptosis and clinical resistance.Br J Cancer. 1997;76:935–938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Campos L, Rouault JP, Sabido O, et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy.Blood. 1993;81:3091–3096.

    PubMed  CAS  Google Scholar 

  138. Bradbury DA, Zhu YM, Russell NH. Bcl-2 expression in acute myeloblastic leukaemia: relationship with autonomous growth and CD34 antigen expression.Leuk Lymphoma. 1997;24:221–228.

    Article  PubMed  CAS  Google Scholar 

  139. Davis RE, Greenberg PL. Bcl-2 expression by myeloid precursors in myelodysplastic syndromes: relation to disease progression.Leuk Res. 1998;22:767–767.

    Article  PubMed  CAS  Google Scholar 

  140. Lepelley P, Soenen V, Preudhomme C, Merlat A, Cosson A, Fenaux P. bcl-2 expression in myelodysplastic syndromes and its correlation with hematological features, p53 mutations and prognosis.Leukemia. 1995;9:726–730.

    PubMed  CAS  Google Scholar 

  141. Sherr CJ. Cancer cell cycles.Science. 1996;274:1672–1677.

    Article  CAS  PubMed  Google Scholar 

  142. Bincoletto C, Saad ST, Soares da Silva E, Queiroz ML. Autonomous proliferation and bcl-2 expression involving haematopoietic cells in patients with myelodysplastic syndrome.Br J Cancer. 1998;78:621–624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Raza A, Alvi S, Borok RZ, et al. Excessive proliferation matched by excessive apoptosis in myelodysplastic syndromes: the cause-effect relationship.Leuk Lymphoma. 1997;27:111–118.

    Article  PubMed  CAS  Google Scholar 

  144. Jonveaux P, Fenaux P, Quiquandon I, et al. Mutations in the p53 gene in myelodysplastic syndromes.Oncogene. 1991;6:2243–2247.

    PubMed  CAS  Google Scholar 

  145. Sugimoto K, Hirano N, Toyoshima H, et al. Mutations of the p53 gene in myelodysplastic syndrome (MDS) and MDS-derived leukemia.Blood. 1993;81:3022–3026.

    PubMed  CAS  Google Scholar 

  146. Wattel E, Preudhomme C, Hecquet B, et al. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies.Blood. 1994;84:3148–3157.

    CAS  PubMed  Google Scholar 

  147. Uchida T, Kinoshita T, Nagai H, et al. Hypermethylation of the p15INK4B gene in myelodysplastic syndromes.Blood. 1997;90:1403–1409.

    PubMed  CAS  Google Scholar 

  148. Quesnel B, Guillerm G, Vereecque R, et al. Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression.Blood. 1998;91:2985–2990.

    CAS  PubMed  Google Scholar 

  149. Karsdorf A, Dresch C, Metral J, Najean Y. Prognostic value of the combined suicide level of granulocyte progenitors and the labelling index of precursors in preleukemic states and oligoblastic leukemias.Leuk Res. 1983;7:279–286.

    Article  PubMed  CAS  Google Scholar 

  150. Montecucco C, Riccardi A, Traversi E, et al. Flow cytometric DNA content in myelodysplastic syndromes.Cytometry. 1983;4:238–243.

    Article  PubMed  CAS  Google Scholar 

  151. Peters SW, Clark RE, Hoy TG, Jacobs A. DNA content and cell cycle analysis of bone marrow cells in myelodysplastic syndromes (MDS).Br J Haematol. 1986;62:239–245.

    Article  PubMed  CAS  Google Scholar 

  152. Raza A, Alvi S, Broady-Robinson L, et al. Cell cycle kinetic studies in 68 patients with myelodysplastic syndromes following intravenous iodo- and/or bromodeoxyuridine.Exp Hematol. 1997;25:530–535.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam J. Mufti.

About this article

Cite this article

Parker, J.E., Mufti, G.J. The Role of Apoptosis in the Pathogenesis of the Myelodysplastic Syndromes. Int J Hematol 73, 416–428 (2001). https://doi.org/10.1007/BF02994003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02994003

Key words

Navigation