Skip to main content
Log in

Retrieval of land surface temperature and emissivity from satellite data: Physics, theoretical limitations and current methods

  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Remote sensing from satellites is the only means to obtain land surface temperature (LST) and emissivity on a larger scale. LST has many applications, e.g., in radiation budget experiments and global warming, and desertification studies. Over the last decades, substantial amount of research was dedicated towards extracting LST and emissivity from surface-leaving radiance and de-coupling the two from each other. This paper provides the physical basis, discusses theoretical limitations, and gives an overview of the current methods for space-borne passive sensors operating in the infrared range, e.g., NOAA-AVHRR, Meteosat, ERS-ATSR, TERRA-MODIS, and TERRA-ASTER. Atmospheric effects on estimated LST are described and atmospheric-correction using a radiative transfer model (RTM) is explained. The methods discussed are the single channel method, the split window techniques (SWTs), and the multi-angle method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, F. and Li, Z-L. (1990a). Towards a local split. window method over land surface. Int. J. Remote Sensing,11: 369–394.

    Article  Google Scholar 

  • Becker, F. and Li, Z-L. (1990b). Temperature-Independent spectral indices in thermal infrared bands. Remote Sensing Env.,32: 17–33.

    Article  Google Scholar 

  • Becker, F. and Li, Z.-L. (1995). Surface temperature and emissivity at different scales: definition, measurement and related problems. Remote Sensing Reviews,12: 225–253.

    Google Scholar 

  • Chedin, A., Scott, N. and Berroir, A. (1982). A single-channel double viewing method for SST determination from coincident Meteosat and TIROS-N measurements. J. Applied Meteorology.21: 613–618.

    Article  Google Scholar 

  • Dash, P., Göttsche, F-M., Olesen, F-S. and Fischer, H. (2001). Land surface temperature and emissivity estimation from passive sensor data: theory and practice; current trends. Int. J. Remote Sensing (in press).

  • Franca, G. B. and Cracknell, A. P. (1994). Retrieval of land and sea surface temperature using NOAA-11 AVHRR data in north-eastern Brazil. Int. J. Remote Sensing,15: 1695–1712.

    Article  Google Scholar 

  • Gillespie, A.R., Rokugawa, S., Hook, S.J., Matsunaga, T. and Kahle, A.B. (1996). Temperature/emissivity separation algorithm theoretical basis document. Version 2.3., NAS5-31372, NASA/GSFC. Greenbelt MD, USA.

    Google Scholar 

  • Göttsche, F.-M. and Olesen, F-S. (2001). Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data, Remote Sensing Env.,76: 338–349.

    Article  Google Scholar 

  • Herrera, F., Rosa, F., Gonzalez, A. and Pérez, J. C. (1999). Method based on a radiative transfer model to extract the solar component from NOAA-AVHRR channel-3. Int. J. Remote Sensing,20: 699–710.

    Article  Google Scholar 

  • Ignatov, A. M. and Dergileva, I. L. (1994). Angular effect in dual-window AVHRR brightness temperatures over oceans. Int. J. Remote Sensing,15: 3845–3850.

    Article  Google Scholar 

  • Kahle, A. B., Madura, D. P. and Soha, J. M. (1980). Middle infrared multispectral aircraft scanner data: analysis for geological applications. Appl. Optics,19: 2279–2290.

    Article  Google Scholar 

  • Kealy, P. S. and Hook, S. J. (1993). Separating temperature and emissivity in thermal infrared multispectral scanner data: Implications for recovering land surface temperatures, IEEE Transactions on Geoscience and Remote Sensing,31(6): 1155–1164.

    Article  Google Scholar 

  • Kerr, Y. H., Lagouarade, J. P. and Imbernon, J. (1992). Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm. Remote Sensing Env.,41: 197–209.

    Article  Google Scholar 

  • Kidder, S. Q. and Vonder Haar,T. H. (1995). Satellite Meteorology: an introduction, 1st edn (London: Academic Press).

    Google Scholar 

  • Kneizys, F.X., Robertson, D.C., Abreu, L.W., Acharya, P., Anderson, G.P., Rothman, L.S., Chetwynd, J.H., Sleety, J. E. A., Shettle, E. P., Gallery, W. O., Berg, A., Clough, S.A., and Bernstein, L.S. Edited by: Abreu, L. W. and Anderson, G.P. (Jan. 11, 1996). The MODTRAN 2/3 Report and LOWTRAN 7 MODEL. Philipps Laboratory, Hanscom, USA.

    Google Scholar 

  • Lakshmi, V. and Susskind, J. (2000). Comparison of TOVS-derived land surface variables with ground observations. J. Geophys. Research,105: 2179–2190.

    Article  Google Scholar 

  • Li, Z-L., Becker, F., Stoll, M. P. and Wan, Z. (1999). Evaluating six methods for extracting relative emissivity spectra from thermal infrared images. Remote Sensing Env.,69: 197–214

    Article  Google Scholar 

  • McMillin, L. M. (1975). Estimation of sea surface temperature from two infrared window measurements with different absorption. J. Geophys. Research,80: 5113–5117.

    Article  Google Scholar 

  • Nerry, F., Labed, J. and Stoll, M. P. (1988). Emissivity signatures in the thermal IR band for remote sensing: calibration procedure and method of measurements. Appl. Optics,27: 758–764.

    Article  Google Scholar 

  • Ottlé, C. and Vidal-Madjar, D. (1992). Estimation of land surface temperature with N0AA9 data. Remote Sensing Env.,40: 27–41.

    Article  Google Scholar 

  • Prata, A. J. (1993). Land surface temperatures derived from the advanced very high resolution radiometer and the Along-Track Scanning Radiometer 1. Theory. J. Geophys. Research,98: 16689–16702.

    Article  Google Scholar 

  • Prata, A. J., Caselles, V., Coll, C, Sobrino, A. and Ottlé, C. (1995). Thermal remote sensing of land surface temperature from satellites: current status and future prospects, Remote Sensing Reviews,12: 175–224.

    Google Scholar 

  • Price, J. C. (1983). Estimation of surface temperatures from satellite thermal infrared data- a simple formulation for the atmospheric effect. Remote Sensing Env.,13: 353–361.

    Article  Google Scholar 

  • Price, J. C. (1984). Land surface temperature measurements from the split window channels of the NOAA-7 AVHRR. J. Geophy. Research,89: 7231–7237.

    Article  Google Scholar 

  • Qin, Z. and Karnieli, A. (1999). Progress in remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data. Int. J. Remote Sensing,20: 2367–2393.

    Article  Google Scholar 

  • Reutter, H., Olesen, F. S. and Fischer, H. (1994). Distribution of the brightness temperature of land surfaces determined from AVHRR data. Int. J. Remote Sensing,15: 95–104.

    Article  Google Scholar 

  • Salisbury, W. and D’Aria, D. M. (1992). Emissivity of terrestrial materials in the 8–14 mm atmospheric window. Remote Sensing Env.,42: 83–106.

    Article  Google Scholar 

  • Schädlich, S., F.-M. Göttsche and F.-S. Olesen (2001). Influence of land parameters and atmosphere on Meteosat brightness temperatures and generation of land surface temperature maps by temporally and spatially interpolating atmospheric correction. Remote Sensing Env.,75: 39–46.

    Article  Google Scholar 

  • Schroedter, M., Olesen, F. and Fischer, H. (2001). Determination of LST distributions from single channel IR measurements: An effective spatial interpolation method for the use of TOVS, ECMWF and radiosonde profiles in the atmospheric correction scheme. Int. J. Remote Sensing (in press).

  • Scorer, R. S. (1987). Cloud formations seen by satellite. Proceedings of NATO ASI on Remote Sensing Applications in Meteorology and Climatology, 17 Aug.-6 Sep. 1987 (Dundee, Scotland: NATO Series C: Mathematical and Physical Sciences),201: pp. 1–81.

    Google Scholar 

  • Sobrino, J. A., Cool, C. and Caselles, V. (1991). Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5. Remote Sensing Env.,38: 19–34.

    Article  Google Scholar 

  • Susskind, J., Rosenfield, J., Renter, D. and Chahine, M. T. (1984). Remote sensing of weather and climate parameters from HIRS2/Msu on TIROS-N. J. Geophys. Research,89: 4677–4697.

    Article  Google Scholar 

  • Valor, E. and Caselles, V. (1996). Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sensing Env.,57: 167–184.

    Article  Google Scholar 

  • Watson, K. (1992). Spectral ratio method for measuring emissivity. Remote Sensing Env.,42: 113–116.

    Article  Google Scholar 

  • Wilber, A. C, Kratz, D. P. and Gupta, S. K. (1999). Surface emissivity maps for use in satellite retrievals of longwave radiation. NASA Technical Publications, NASA/TP-1999-209362, NASA/LRC, Hampton Virginia, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Dash, P., Göttsche, FM., Olesen, FS. et al. Retrieval of land surface temperature and emissivity from satellite data: Physics, theoretical limitations and current methods. J Indian Soc Remote Sens 29, 23–30 (2001). https://doi.org/10.1007/BF02989910

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02989910

Keywords

Navigation