Skip to main content
Log in

Possible role of cell cycle-dependent morphology, geometry, and mechanical properties in tumor cell metastasis

  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

Studies that examine the shear- and abrasion-sensitivity of proliferating cells are important in order to understand the behavior of hybridoma cells in bioreactor culture and metastasizing cancer cells in the bloodstream. Little is known about the link between morphology, structure, and mechanical properties of a given cell line, especially with respect to variations throughout the cell cycle. In our experiments with GAP A3 hybridoma cells, distinct cell morphologies were identified and correlated with phases of the cell cycle by video microscopic observation of synchronized cells, and of individual cells that were followed throughout their cell cycle. Micropipet manipulation was used to measure the geometrical (cell volume) and mechanical (apparent cell viscosity) properties of single cells. As the cell cycle progressed at 37°C, an increase in cell volume from 1400 μm3 to 5700 μm3 was accompanied by an increase in apparent cell viscosity from 430 poise to 12,000 poise, consistent with an accumulation of more cytoplasmic material in the “older” cells. Hybridomas are representative of the various leukemias derived from hemopoietic cells, and even though as a whole, they appeared to be rather shear-insensitive, the wide range of property values demonstrates that a given cell line cannot be characterized by a single value for any one property, and that properties must be related to the cell cycle when considering proliferating cells. It is interesting to see if distinct stages in the metastatic sequence of events might correlate with any of these physical features of the cell cycle, irrespective of cell type or cell line. For example, the cytokinetic doublet could represent a fragile structure that may fail and produce cell death under fluid-shear conditions that would not affect the cells at any other stage in the cell cycle. Identifying such cell cycle-dependent features in metastasizing cancer cells could lead to a better understanding of the metastatic process and to possible clinical treatments directed at making cells more shear- and abrasion-sensitive, and therefore, more likely to be killed by the natural hydrodynamic forces of the circulatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiss, L. (1985),Principles of Metastasis Academic Press, Orlando, FL.

    Google Scholar 

  2. Nicholson, G. L. (1988),Biochim. Biophys. Acta 948, 175.

    Google Scholar 

  3. Weiss, L., Harlos, J. P., Elkin, G., and Bixler, B. (1990),Cell Biophys. 16, 149–159.

    PubMed  CAS  Google Scholar 

  4. Ward, K. A., Li, W.-I., Zimmer, S., and Davis, T. (1991),Biorheology 28, 301–313.

    PubMed  CAS  Google Scholar 

  5. Nicholson, G. L. and Hug, V. (1990),Oncol Case Rep. Rev. 5, 1–11.

    Google Scholar 

  6. Cherry, R. S. and Papoutsakis, E. T. (1988),Biotechnol. Bioeng. 32, 1001.

    Article  PubMed  CAS  Google Scholar 

  7. Croughan, M. S. and Wang, D. I. C. (1990),Biotechnol. Bioeng. 33, 731.

    Article  Google Scholar 

  8. Petersen, J. F., McIntire, L. V., and Papoutsakis, E. T. (1988),J. Biotechnol 7, 229.

    Article  CAS  Google Scholar 

  9. Petersen, J. F., Mclntire, L. V., and Papoutsakis, E. T. (1990),Biotechnol. Prog. 6, 114.

    Article  PubMed  CAS  Google Scholar 

  10. Dodge, T. C. and Hu, W. S. (1986),Biotechnol. Lett. 8, 683.

    Article  Google Scholar 

  11. Cherry, R. S. and Papoutsakis, E. T. (1986),Bioproc. Eng. 1, 29.

    Article  Google Scholar 

  12. Handa, A., Emery, A. N., and Spier, R. E. (1987),Dev. Biol. Std. 66, 241.

    CAS  Google Scholar 

  13. Handa-Corrigan, A., Emery, A. N., and Spier, R. E. (1989),Enzyme Microbiol Technol. 11, 230.

    Article  CAS  Google Scholar 

  14. Cherry, R. S. and Papoutsakis, E. T. (1989),Bioproc. Eng. 4, 81.

    Article  Google Scholar 

  15. Oh, S. K. W., Al-Rubeai, M., Emery, A. N., and Nienow, A. W. (1989),Advances in Animal Cell Biology and Technology for Bioprocesses (European Society for Animal Cell Technology 9th Meeting), J. B. G. R. E. Spier J. Stephenne and J. P. Crooy, eds., pp. 221.

  16. Passini, C. A. and Goochee, C. F. (1989),Biotechnol. Prog. 5, 175.

    Article  Google Scholar 

  17. Needham, D., Ting-Beall, H. P., and Tran-Son-Tay, R. (1991),Biotech. Bioeng. 38, 838–852.

    Article  CAS  Google Scholar 

  18. Tran-Son-Tay, R. (1991),Physical Forces and the Mammalian Cell J. A. Frangos and C. L. Ives, eds., Academic Press, in press.

  19. Evans, E. and Skalak, R. (1980),Mechanics and Thermodynamics of Biomembranes CRC, Boca Raton, FL.

    Google Scholar 

  20. Berk, D. A., Hochmuth, R. M., and Waugh, R. E. (1989),Red Blood Cell Membranes. Structure, Function, Clincial Applications P. Agre and J. C. Parker, eds., Marcel Dekker, Inc., New York and Basel, pp. 423–454.

    Google Scholar 

  21. Evans, E. (1988),Physical Basis of Cell-Cell Adhesion P. Bongrand, ed. CRC Press, Boca Raton, FL.

    Google Scholar 

  22. Evans, E. and Yeung, A. (1989),Biophys. J. 56, 151–160.

    PubMed  CAS  Google Scholar 

  23. Yueng, A. and Evans, E. (1989),Biophys. J. 56, 139–149.

    Google Scholar 

  24. Needham, D. and Hochmuth, R. M. (1990),J. Biomech. Eng. 112, 269–276.

    Article  PubMed  CAS  Google Scholar 

  25. Dong, C., Skalak, R., Sung, K.-L., Schmid-Schonbein, G. W., and Chein, S. (1988),J. Biomech. Eng. 110, 27–36.

    PubMed  CAS  Google Scholar 

  26. Warnke, K. C. and Skalak, T. C. (1991),J. Biomech. Eng. in press.

  27. Tran-Son-Tay, R., Needham, D., Yeung, A., and Hochmuth, R. M. (1991),Biophys. J. 60, 856–866.

    PubMed  CAS  Google Scholar 

  28. Schmid-Schonbein, G. W., Shih, Y. Y., and Chien, S. (1980),Blood 56, 866–875.

    PubMed  CAS  Google Scholar 

  29. Schröder, S., Palinski, W., and Schmid-Schönbein, G. W. (1991),Am. J. Pathol. 139, 81–100.

    PubMed  Google Scholar 

  30. Hall, E. L. (1988),Radiobiology for the Radiologist J. B. Lippincott Co., Philadelphia, PA.

    Google Scholar 

  31. Woodruff, M. (1990),Cellular Variation and Adaptation in Cancer Oxford University Press, Oxford, UK.

    Google Scholar 

  32. Weiss, L. (1980),Pathobiol. Ann. 10, 51–81.

    CAS  Google Scholar 

  33. Larizza, L., Schirrmacher, V., Graf, L., Pflüger, E., Perez-Martinez, M., and Stöhr, M. (1984),Int. J. Cancer 34, 699–707.

    Article  PubMed  CAS  Google Scholar 

  34. Schirrmacher, V. (1986),Deutsches Krebsforschungszentrum, Current Cancer Research Deutsches Krebsforschungszentrum, Steinkopff Darmstadt, Springer Verlag, New York.

    Google Scholar 

  35. Weiss, L. (1979),Am. J. Path. 97, 601–608.

    PubMed  CAS  Google Scholar 

  36. Knutton, S., Sumner, M. C. B., and Pasternak, C. A. (1975),J. Cell Biol. 66, 568.

    Article  PubMed  CAS  Google Scholar 

  37. Hatcher, V. B., Werthiem, M. S., Rhee, C. Y., Tsien, G., and Burk, P. G. (1976),BBA 451, 499–510.

    PubMed  CAS  Google Scholar 

  38. Jirtle, R. L. (1988),Int. J. Hyperthermia 4, 355–371.

    Article  PubMed  CAS  Google Scholar 

  39. Dewhirst, M. W., Tso, C. Y., Oliver, R., Gustafson, C., Secombe, T., and Gross, J. F. (1989),Int. J. Radiat. Oncol 17, 91–99.

    CAS  Google Scholar 

  40. Dewhirst, M. W., Oliver, R., Tso, C. Y., Gustafson, C., Secombe, T., and Gross, J. F. (1990),Int. J. Radiat. Oncol Biol Phys. 18, 559–568.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Needham, D. Possible role of cell cycle-dependent morphology, geometry, and mechanical properties in tumor cell metastasis. Cell Biophysics 18, 99–121 (1991). https://doi.org/10.1007/BF02989809

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02989809

Index Entries

Navigation