Skip to main content
Log in

Glial metabolic dysfunction caused neural damage by short-term ischemia in brain

  • Short Communication
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Although several pieces of evidence have indicated that glial cells support neuronal cells in the ischemia-reperfusion brain, the direct contribution of glial cells to cell damage is not well known. The present study was designed to determine whether there are any changes in cell damage after a short-term middle cerebral artery occlusion (MCAO) when glial metabolism is suppressed. Injection of fluorocitrate (FC) or 10 minutes MCAO alone did not produce cell damage. However, 10 minutes MCAO in rats pretreated with FC caused significant cell damage. These data directly demonstrated that inhibition of glial metabolism might increase neuronal vulnerability to even a short-term transient ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chen Y, Swanson RA. Astrocytes and brain injury.J Cereb Blood Flow Metab 2003; 23: 137–149.

    Article  PubMed  Google Scholar 

  2. Walz W. Role of astrocytes in the clearance of excess extracellular potassium.Neurochem Int 2000; 36: 291–300.

    Article  PubMed  CAS  Google Scholar 

  3. Paulsen RE, Contestabile A, Villani L, Fonnum F. Anin vivo model for studying function of brain tissue temporarily devoid of glial cell metabolism: the use of fluorocitrate.J Neurochem 1987; 48: 1377–1385.

    Article  PubMed  CAS  Google Scholar 

  4. Hassel B, Paulsen RE, Johnsen A, Fonnum F. Selective inhibition of glial cell metabolismin vivo by fluorocitrate.Brain Res 1992; 576: 120–124.

    Article  PubMed  CAS  Google Scholar 

  5. Hosoi R, Okada M, Hatazawa J, Gee A, Inoue O. Effect of astrocytic energy metabolism depressant on14C-acetate uptake in intact rat brain.J Cereb Blood Flow Metab 2004; 24: 188–190.

    Article  PubMed  CAS  Google Scholar 

  6. Abe K, Kashiwagi Y, Tokumura M, Hosoi R, Hatazawa J, Inoue O. Discrepancy between cell injury and benzodiaz- epine receptor binding after transient middle cerebral artery occlusion in rats.Synapse 2004; 53: 234–239.

    Article  PubMed  CAS  Google Scholar 

  7. Hassel B, Sonnewald U, Fonnum F. Glial-neuronal interactions as studied by cerebral metabolism of [2-13C]acetate and [l-13C]glucose: anex vivo 13C NMR spectroscopic study.J Neurochem 1995; 64: 2773–2782.

    PubMed  CAS  Google Scholar 

  8. Haberg A, Qu H, Haraldseth O, Unsgard G, Sonnewald U.In vivo injection of [l-13C]glucose and [l,2-13C]acetate combined withex vivo 13C nuclear magnetic resonance spectroscopy: a novel approach to the study of middle cerebral artery occlusion in the rat.J Cereb Blood Flow Metab 1998; 18: 1223–1232.

    Article  PubMed  CAS  Google Scholar 

  9. Hagberg H, Lehmann A, Sandberg M, Nystrom B, Jacobson I, Hamberger A. Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments.J Cereb Blood Flow Metab 1985; 5: 413–419.

    PubMed  CAS  Google Scholar 

  10. Xiong ZQ, Stringer JL. Astrocytic regulation of the recovery of extracellular potassium after seizuresin vivo.Eur J Neurosci 1999; 11: 1677–1684.

    Article  PubMed  CAS  Google Scholar 

  11. Largo C, Cuevas P, Somjen GG, Martin del Rio R, Herreras O. The effect of depressing glial function in rat brainin situ on ion homeostasis, synaptic transmission, and neuron survival.J Neurosci 1996; 16: 1219–1229.

    PubMed  CAS  Google Scholar 

  12. Largo C, Ibarz JM, Herreras O. Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brainin situ.J Neurophysiol 1997; 78: 295–307.

    Article  PubMed  CAS  Google Scholar 

  13. Iijima T, Mies G, Hossmann KA. Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: effect on volume of ischemic injury.J Cereb Blood Flow Metab 1992; 12: 727–733.

    PubMed  CAS  Google Scholar 

  14. Davies G, Peterson DW. Normal extracellular calcium levels block kindled seizures.Exp Neurol 1989; 106: 99–101.

    Article  PubMed  CAS  Google Scholar 

  15. Schurr A, Payne RS, Miller JJ, Rigor BM. Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: furtherin vitro validation.J Neurochem 1997; 69: 423–426.

    Article  PubMed  CAS  Google Scholar 

  16. Maran A, Cranston I, Lomas J, Macdonald I, Amiel SA. Protection by lactate of cerebral function during hypoglycaemia.Lancet 1994; 343: 16–20.

    Article  PubMed  CAS  Google Scholar 

  17. Mendelowitsch A, Ritz MF, Ros J, Langemann H, Gratzl O. 17beta-Estradiol reduces cortical lesion size in the glutamate excitotoxicity model by enhancing extracellular lactate: a new neuroprotective pathway.Brain Res 2001; 901: 230–236.

    Article  PubMed  CAS  Google Scholar 

  18. Schurr A, Payne RS, Miller JJ, Tseng MT, Rigor BM. Blockade of lactate transport exacerbates delayed neuronal damage in a rat model of cerebral ischemia.Brain Res 2001; 895: 268–272.

    Article  PubMed  CAS  Google Scholar 

  19. Bock A, Tegtmeier F, Hansen AJ, Holler M. Lactate and postischemic recovery of energy metabolism and electrical activity in the isolated perfused rat brain.J Neurosurg Anesthesiol 1993; 5: 94–103.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rie Hosoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosoi, R., Kashiwagi, Y., Hatazawa, J. et al. Glial metabolic dysfunction caused neural damage by short-term ischemia in brain. Ann Nucl Med 20, 377–380 (2006). https://doi.org/10.1007/BF02987251

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02987251

Key words

Navigation