Skip to main content
Log in

The eye-pigmentary system ofDrosophila

III. The action of eye-colour genes

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Summary

This investigation was mainly directed at the solution of the problem of the multiplicity of eye-colour genes inDrosophila melanogaster.

  1. 1.

    For the purposes of routine quantitative comparison of the red and brown eye pigments of different mutant strains with those of the wild-type, methods are described for the rearing of normal-sized flies and for the extraction of the two pigments and their spectrophotometric analysis. The light-absorption curves are given of these pigments in the wild-type and various mutants, singly and in combination. The two pigments typical of the wild-type are found in all mutants with the exception of the alleles of the white locus which condition the production of a qualitatively changed red pigment.

  2. 2.

    Quantitative estimations of the pigments in the wild-type and the different mutants studied indicate the following effects of mutant genes:w m4 has decreased amounts of both pigments, with the red pigment content varying greatly with temperature changes;ras 2 has a decreased amount of red pigment; the genes of the ruby group,rb, cm, g 3 andcar, effect a reduction in the content of both pigments, but there is no simple relation between the amounts of this reduction, the four genes showing differential effects on the two pigments; the alleles ofw reduce the amount of red pigment to a great extent and the brown pigment content to a varying extent for the different alleles, but again the effects on the two pigments are differential, there being no simple linear quantitative ratio between the amounts in the different alleles;st suppresses the production of the brown pigment but possibly causes an increase in red pigment content;bw suppresses the production of the red pigment (unless a small amount of qualitatively changed red pigment is formed) and also reduces the brown pigment content; combinations between the genes of the ruby group,inter se and withst andbw, show sub-additive interaction effects and an overlapping in the mode of their action; two alleles ofcar show a simple quantitative relation in the amount of red pigment produced.

  3. 3.

    A scheme is presented to show some of the interrelationships which exist between the various genes which affect eye pigmentation. The probable mode of action of the normal allele of white is at the level where a common substrate is differentiated for the formation of specific substrates for the red and brown chromogens, but where also certain by-products are formed for utilization in the protein carrier and granule system. The normal alleles of scarlet and brown then fit into the scheme at a later level, i.e. that of chromophore or chromoprotein formation. The action of the normal allele of raspberry2 seems to be at the level of cellular differentiation. In connexion with the mode of action of the normal alleles of the genes for ruby, carmine, garnet3 and carnation the concept is developed that many eye-colour genes affect eye pigmentation only indirectly, i.e. eye colour is influenced by them epigenetically, consequent on their main function being the directing of enzyme specificities for the breakdown and resynthesis of proteins during metamorphosis; the products of breakdown are utilized in the eye-pigmentary system which in this activity is partly an excretory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beadle, G. W. (1937). Development of eye colors inDrosophila: fat bodies and Malpighian tubes in relation to diffusible substances.Genetics,22, 587–611.

    CAS  PubMed  Google Scholar 

  • Beadle, G. W., Anderson, R. L. &Maxwell, J. (1938). A comparison of the diffusible substances concerned with eye color development inDrosophila, Ephestia andHabrobracon.Proc. Nat. Acad. Sci., Wash.,24, 80–5.

    Article  CAS  Google Scholar 

  • Beadle, G. W., Clancy, C. W. &Ephrussi, B. (1937). Development of eye colours inDrosophila: pupal transplants and the influence of body fluid on vermilion.Proc. Roy. Soc. B,122, 98–105.

    CAS  Google Scholar 

  • Beadle, G. W. &Ephrussi, B. (1936). The differentiation of eye pigments inDrosophila as studied by transplantation.Genetics,21, 225–47.

    CAS  PubMed  Google Scholar 

  • Beadle, G. W. &Ephrussi, B. (1937). Development of eye colors inDrosophila: diffusible substances and their interrelations.Genetics,22, 76–81.

    CAS  PubMed  Google Scholar 

  • Beadle, G. W., Mitchell, H. K. &Nyc, J. F. (1947). Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane byNeurospora.Proc. Nat. Acad. Sci. Wash.,33, 155–8.

    Article  CAS  Google Scholar 

  • Beadle, G. W. &Tatum, E. L. (1941). Experimental control of development and differentiation. Genetic control of developmental reactions.Amer. Nat. 75, 107–16.

    Article  Google Scholar 

  • Beadle, G. W., Tatum, E. L. &Clancy, C. W. (1938). Food level in relation to rate of development and eye pigmentation inDrosophila melanogaster.Biol. Bull. Woods Hole,75, 447–62.

    Article  Google Scholar 

  • Becker, E. (1939). Über die Natur der Augenpigments vonEphestia kühniella und seinen Vergleich mit den Augenpigmenten anderer Insekten.Biol. Zbl. 59, 597–627.

    CAS  Google Scholar 

  • Becker, E. (1942). Über Eigenschaften, Verbreitung und die genetischentwicklungsphysiologische Bedeutung der Pigmente der Ommatin- und Ommingruppe (Ommochrome) bei der Arthropoden.Z. indukt. Abstamm.-u. VererbLehre,80, 157–204.

    Article  Google Scholar 

  • Brehme, K. S. &Demerec, M. (1942). A survey of Malpighian, tube colour in the eye colour mutants ofDrosophila melanogaster.Growth,6, 351–5.

    Google Scholar 

  • Bridges, C. B. (1919). Specific modifiers of eosin eye color inDrosophila melanogaster.J. Exp. Zool. 28, 337–84.

    Article  Google Scholar 

  • Butenandt, A., Weidel, W. &Becker, E. (1940). Kynurenin are Augenpigmentbildung auslöseudes Agens bei Insekten.Naturwissenschaften,28, 63–4.

    Article  CAS  Google Scholar 

  • Caspari, E. (1946). On the effects of the genea on the chemical composition ofEphestia kühniella Zeller.Genetics,31, 454–74.

    CAS  PubMed  Google Scholar 

  • Castle, W. E. (1941). Influence of certain color mutations on body size in mice, rats and rabbits.Genetics,26, 177–91.

    CAS  PubMed  Google Scholar 

  • Clancy, C. W. (1942). The development of eye colors inDrosophila melanogaster. Further studies on the mutant claret.Genetics,27, 417–40.

    CAS  PubMed  Google Scholar 

  • Clancy, C. W. (1948). Abstract. Amer. Genet. Soc. Meeting, 11–13 Sept.

  • Cochrane, F. (1938). Genetic and developmental relationships of testis and eye colour inDrosophila pseudo-obscura.J. Genet. 36, 11–16.

    Article  Google Scholar 

  • Dobzhansky, Th. &Holz, A. M. (1943). A re-examination of the problem of manifold effects of genes inDrosophila melanogaster.Genetics,28, 295–303.

    CAS  PubMed  Google Scholar 

  • Ephrussi, B. (1942). Analysis of eye color differentiation inDrosophila.Cold Spr. Harb., Symp. Quant. Biol. 10, 40–8.

    Google Scholar 

  • Ephrussi, B. (1945). Studies of eye pigments inDrosophila. III. The heterogeneity of the red ‘pigment’ as revealed by the effects of the ‘white’ alleles and by the color changes during development.Genetics,30, 71–83.

    CAS  PubMed  Google Scholar 

  • Ephrussi, B. &Beadle, G. W. (1937). Development of eye colors inDrosophila: transplantation experiments on the interaction of vermilion with other eye colors.Genetics,22, 65–75.

    CAS  PubMed  Google Scholar 

  • Ephrussi, B. &Chevais, S. (1938). Développement des couleurs des yeux chez la Drosophile. Relations entre production, utilisation et libération des substances diffusibles.Biol. Bull. 72, 48–78.

    Google Scholar 

  • Ephrussi, B. &Herold, J. L. (1944). Studies of eye pigments ofDrosophila. I. Methods of extraction and quantitative estimation of the pigment components.Genetics,29, 148–75.

    CAS  PubMed  Google Scholar 

  • Ephrussi, B. &Herold, J. L. (1945). Studies of eye pigments ofDrosophila. II. Effect of temperature on the red and brown pigments in the mutant blood (w bl).Genetics,30, 62–70.

    CAS  PubMed  Google Scholar 

  • Fox, A. S. (1949). Immunogenetic studies ofDrosophila melanogaster. II. Interaction between therb andv loci in the production of antigens.Genetics,34, 647–64.

    CAS  PubMed  Google Scholar 

  • Glass, H. B. (1934). A study of dominant mosaic eye-color mutants inDrosophila melanogaster.Amer. Nat. 68, 107–14.

    Article  Google Scholar 

  • Gottschewski, G. &Tan, C. C. (1938). The homology of the eye color genes inDrosophila melanogaster andDrosophila pseudoobscura as determined by transplantation. II.Genetics,23, 221–38.

    CAS  PubMed  Google Scholar 

  • Grüneberg, H. (1943). Congenital hydrocephalus in the mouse, a case of spurious pleiotropism.J. Genet. 45, 1–21.

    Article  Google Scholar 

  • Hertweck, H. (1931). Anatomie und Variabilität der Nervensystems, und der Sinnesorgane vonDrosophila melanogaster (Meigen).Z. wiss. Zool. 139, 559–663.

    Google Scholar 

  • Hodson, A. C. &Chiang, H. C. (1948). A new method for rearingDrosophila.Science,107, 176–7.

    Article  PubMed  Google Scholar 

  • Khouvine, Y., Ephrussi, B. &Harnley, M. H. (1936). Extraction et solubilité des substances des yeux deDrosophila melanogaster.C.R. Acad. Sci., Paris,203, 1542.

    CAS  Google Scholar 

  • Kikkawa, H. (1941). Mechanism of pigment formation inBombyx andDrosophila.Genetics,26, 587–607.

    CAS  PubMed  Google Scholar 

  • Lawrence, W. J. C. &Scott-Moncrieff, R. (1935). The genetics and chemistry of flower colour inDahlia: a new theory of specific pigmentation.J. Genet. 30, 155–226.

    Article  CAS  Google Scholar 

  • Maas, K. (1948). Spectrophotometric and chromatographic adsorption analysis of the red eye pigment ofDrosophila melanogaster.Genetics,33, 177–90.

    Google Scholar 

  • Mainx, F. (1938). Analyse der Genwirkung durch Faktorenkombination. Versuche mit den Augen-farbenfaktoren vonDrosophila melanogaster. Z. indukl. Abstamm.-u..Vererb Lehre,75, 256–76.

    Article  Google Scholar 

  • Muller, H. J. (1930). Types of visible variations induced by X-rays inDrosophila.J. Genet. 22, 299–334.

    Article  Google Scholar 

  • Muller, H. J. (1935). On the incomplete dominance of the normal allelomorphs of white inDrosophila.J. Genet. 30, 407–14.

    Article  Google Scholar 

  • Neel, J. V. (1941). Studies on the interaction of mutations affecting the chaetae ofDrosophila melanogaster. I. The interaction of hairy, polychaetoid and Hairy wing.Genetics,26, 52–68.

    CAS  PubMed  Google Scholar 

  • Nolte, D. J. (1950). The eye-pigmentary system ofDrosophila: the pigment cells.J. Genet. 50, 79–99.

    Google Scholar 

  • Nolte, D. J. (1952). The eye-pigmentary system ofDrosophila. II. Phenotypic effects of gene combinations.J. Genet. 51, 130–41.

    Article  Google Scholar 

  • Oliver, C. P. (1947). Interrelationships between eye color and facet arrangement in lozenge alleles ofDrosophila melanogaster.Univ. Texas Publ. no. 4720, pp. 167–84.

    Google Scholar 

  • Pilkington, R. W. (1941–2). Facet mutants ofDrosophila.Proc. Zool. Soc. Lond. Ser. A,111, 199–222.

    Google Scholar 

  • Schultz, J. (1931). The developmental system affected by the genes for eye color inDrosophila. Proc. 6th Int. Congr. Genet. N.Y. pp. 178–9.

  • Schultz, J. (1935). Aspects of the relation between genes and development inDrosophila.Amer. Nat. 69, 30–54.

    Article  Google Scholar 

  • Stern, C. (1943). Genic action as studied by means of the effects of doses and combinations of genes.Genetics,28, 441–75.

    CAS  PubMed  Google Scholar 

  • Stern, C. (1949). The effects of changes in quantity, combination and position of genes.Science,108, 615–21.

    Article  Google Scholar 

  • Tatum, E. L. (1939). Development of eye-colors inDrosophila: bacterial synthesis ofv + hormone.Proc. Nat. Acad. Sci., Wash.,25, 486–90.

    Article  CAS  Google Scholar 

  • Tatum, E. L. &Beadle, G. W. (1938). Development of eye colors inDrosophila: some properties of the hormones concerned.J. Gen. Physiol. 22, 239–53.

    Article  CAS  Google Scholar 

  • Van Atta, E. W. &Van Atta, L. C. (1931). The spectrum analysis of eye colors inDrosophila.Amer. Nat. 65, 382–4.

    Article  Google Scholar 

  • Villee, C. A. (1947). A spectrophotometric analysis of the eye colors ofHabrobracon.Genetics,32, 277–85.

    CAS  PubMed  Google Scholar 

  • Waddington, C. H. (1949). The genetic control of development.Symp. Soc. Exp. Biol. 2, 145–54.

    Google Scholar 

  • Wald, G. &Allen, G. (1946). Fractionation of the eye pigment ofDrosophila melanogaster.J. Gen. Physiol. 30, 41–6.

    Article  CAS  Google Scholar 

  • Waletsky, E. (1939). The interaction of some wing mutants inDrosophila melanogaster.Genetics,24, 8–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

(With Nine Text-figures)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolte, D.J. The eye-pigmentary system ofDrosophila . Journ. of Genetics 51, 142–186 (1952). https://doi.org/10.1007/BF02986712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02986712

Keywords

Navigation