Skip to main content
Log in

Phosphine by bio-corrosion of phosphide-rich iron

  • Research Articles
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phosphine is a toxic agent and part of the phosphorus cycle. A hitherto unknown formation mechanism for phosphine in the environment was investigated. When iron samples containing iron phosphide were incubated in corrosive aquatic media affected by microbial metabolites, phosphine was liberated and measured by gas chromatography. Iron liberates phosphine especially in anoxic aquatic media under the influence of sulfide and an acidic pH. A phosphine-forming mechanism is suggested: Phosphate, an impurity of iron containing minerals, is reduced abioticly to iron phosphide. When iron is exposed to the environment (e.g. as outdoor equipment, scrap, contamination in iron milled food or as iron meteorites) and corrodes, the iron phosphide present in the iron is suspended in the medium and can hydrolyze to phosphine. Phosphine can accumulate to measurable quantities in anoxic microbial media, accelerating corrosion and preserving the phosphine formed from oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gmelin Handbook of Inorganic and Organometallic Chemistry: Phosphorus. Suppl.Vol.C1. Berlin: Springer 1993

  2. World Health Organization: Phosphine and selected metal phosphides. Environmental Health Criteria 73. Geneva 1988

  3. Devai, I.;Felföldy, L.;Witther, L.:Plósz, S.: Detection of phosphine: New aspects of the phosphorus cycle in the hydrosphere. Nature 333 (1988) 343–345

    Article  CAS  Google Scholar 

  4. Devai, I.;Delaune, R.D.: Evidence for phosphine production and emission from Louisiana and Florida marsh soils. Org.Geochem. 23 (1995) 277–279

    Article  CAS  Google Scholar 

  5. Gassmann, G.;Glindemann, D.: Phosphine in the Biosphere: Angew. Chem.Intern.Edit. 32 (1993) 761–763

    Article  Google Scholar 

  6. Glindemann, D.;Stottmeister, U.;Bergmann, A.: Free phosphine from the anaerobic biosphere. Environ.Sci. & Pollut.Res. 3 (1996) 17–19

    Article  CAS  Google Scholar 

  7. Eismann, F.;Glindemann, D.;Bergmann, A.;Kuschk P.: Soils as a source and sink of phosphine. Chemosphere 35 (1997) 523–533

    Article  CAS  Google Scholar 

  8. Glindemann, D.;Bergmann, A.;Stottmeister, U.;Gassmann, G.: (1996) Phosphine in the lower terrestrial troposphere. Naturwissenschaften 83 (1996) 131–133

    Article  CAS  Google Scholar 

  9. Gassmann, G.;Glindemann, D..;van Beusekom, J.: Offshore Atmospheric Phosphine. Naturwissenschaften 83 (1996) 129–131

    Article  CAS  Google Scholar 

  10. Nusch, E.A.;Poltz, J.;Burcksteeg, K.: “Eutrostop” - Eine Alternative zur Gewässersanierung? Korrespondenz Abwasser 34 (1987) 1083–1088

    Google Scholar 

  11. Wagner, R.: Theoretische Untersuchung der Möglichkeit einer mikrobiellen Phosphinbildung im aquatischen Milieu. Forschungsbericht 10204365, Umweltbundesamt Berlin, 1–14, 1989

  12. Iverson, W.P.: Corrosion of iron and formation of iron phosphide by Desulfovibrio desulfuricans. Nature 217 (1968) 1265–1267

    Article  CAS  Google Scholar 

  13. Hamilton, W.A.: Sulphate-reducing bacteria and anaerobic corrosion. Ann.Rev.Microbiol. 39 (1985) 195–217

    Article  CAS  Google Scholar 

  14. Hoare, T.P.;Havenhand, D.J.: Factors influencing the rate of attack of mild steels by typical weak acid media. J.Iron Steel Inst. 133 (1936) 239–291

    Google Scholar 

  15. Tanaka, T.;Nakamura, Y.;Mizuike, A.;Ono, A.: Simultaneous Determination of Phosphorus, Sulfur and Arsenic in Steel by Hydride Generation and Gas Chromatography. Anal. Sci. 12 (1996) 77–80

    Article  CAS  Google Scholar 

  16. van Wazer, J.R.: Phosphorus and its Compounds. The phosphides. Vol. 1, pp 123–175. Interscience Publishers Inc., New York (1965)

    Google Scholar 

  17. Nowicki, T.W.: Gas-Liquid-Chromatographic and flame photometric detection of phosphine in wheat. Journal of Associational Analytical Chemists. 61 (1978) 829–836

    CAS  Google Scholar 

  18. Friel, J.J.;Goldstein, J.I.: An experimental study of phosphate reduction and phosphorus-bearing lunar metal particles. Geochim. Cosmochim. Acta, Suppl. (1976) 7 (Proc. Lunar Sci. Conf., 7th, Vol. 1), 791–806

    CAS  Google Scholar 

  19. Nishida, N.;Kimata, M.;Arakawa, Y.: Native Zinc, Copper, and Brass in the Red-Clouded Anorthite Megacryst as Probes of the Arc-Magmatic Process. Naturwissenschaften 81 (1994) 498–502

    Article  CAS  Google Scholar 

  20. Panduwawala, J.P.;Illeperuma, Chamara D.K.; Samarajeewa, U.: Iron contamination during commercial grinding of spices. J. Nad. Sci. Counc. Sri Lanka 16 (1988) 105–14

    CAS  Google Scholar 

  21. Hanselmann, K.W.: Microbially mediated processes in environmental chemistry. (Lake sediments as model systems). Chimia 40 (1986) 146–159

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glindemann, D., Eismann, F., Bergmann, A. et al. Phosphine by bio-corrosion of phosphide-rich iron. Environ. Sci. & Pollut. Res. 5, 71–74 (1998). https://doi.org/10.1007/BF02986389

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02986389

Keywords

Navigation