Skip to main content
Log in

Single-photon agents for tumor imaging:201TI,99mTc-MIBI, and99mTc-tetrofosmin

  • Review
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

This review aims at fostering comprehension and knowledge not only for expert physicians who can skillfully handle various techniques for tumor imaging but also for young practitioners in the field of nuclear medicine. As image processing software and hardware become smaller, faster and better, SPECT will adapt and incorporate these advances. A principal advantage of SPECT over PET is the more widespread availability of the equipment and lower cost for the introduction of the system in community-based facilities. Moreover, SPECT has become less dependent on a limited number of acknowledged experts for its interpretation owing to a variety of handy computer tools for imaging analyses. The increasing use of PET in tumor imaging is not necessarily proportional to the decline of SPECT. General physicians’ attention to SPECT technology would also increase more by evoking their interest in “tracer imaging.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fox J, Ciani S. Experimental and theoretical studies on Tl+ interactions with the cation-selective channel of the sarcoplasmic reticulum.J Membr Biol 1985; 84:9–23.

    Article  PubMed  CAS  Google Scholar 

  2. Rabon EC, Sachs G. Tl interaction with the gastric (K, H)- ATPase.J Membr Biol 1981; 62:19–27.

    Article  PubMed  CAS  Google Scholar 

  3. Bakker-Grunwald T. Movement of thallous ion across the ascites cell membrane.J Membr Biol 1979; 47:171–183.

    Article  PubMed  CAS  Google Scholar 

  4. Hasan M, Ashraf I, Bajpai VK. Electron microscopic study of the effects of Tl poisoning on the rat cerebellum.Forensic Sci 1978; 11:139–146.

    PubMed  CAS  Google Scholar 

  5. Hasan M, Chandra SV, Bajpai VK, Ali SF. Electron microscopic effects of Tl poisoning on the rat hypothalamus and hippocampus: biochemica changes in the cerebrum.Brain Res Bull 1977; 2:255–261.

    Article  PubMed  CAS  Google Scholar 

  6. Deshimaru M, Miyakawa T, Sumiyoshi S, Yasuoka F, Kawano K. Electron microscopic study of experimental thallotoxicosis.Folia Psychiatr Neurol Jpn 1977; 31:269- 275.

    PubMed  CAS  Google Scholar 

  7. Korotkov SM, Brailovskaya IV. Tl+ increases the permeability of the inner membranes of rat liver mitochondria for monovalent cations.Dokl Biochem Biophys 2001; 378:145–149.

    Article  PubMed  CAS  Google Scholar 

  8. Skulskii IA, Saris NE, Savina MV, Glasunov VV. Uptake of thallous ions by mitochondria is stimulated by nonactin but not by respiration alone.Eur J Biochem 1981; 120:263- 266.

    Article  PubMed  CAS  Google Scholar 

  9. Misra UK, Kalita J, Yadav RK, Ranjan P. Tl poisoning: emphasis on early diagnosis and response to haemodialysis.Postgrad Med J 2003; 79:103–105.

    Article  PubMed  CAS  Google Scholar 

  10. Galvan-Arzate S, Santamaria A. Tl toxicity.Toxicol Lett 1998; 99:1–13.

    Article  PubMed  CAS  Google Scholar 

  11. Hassan IM, Sahweil A, Constantinides C, Mahmoud A, Nair M, Omar YT, et al. Uptake and kinetics of Tc-99m hexakis 2-methoxy isobutyl isonitrile in benign and malignant lesions in the lungs.Clin Nucl Med 1989; 14:333–340.

    Article  PubMed  CAS  Google Scholar 

  12. Biersack HJ, Briele B, Hotze AL, Oehr P, Qian L, Mekkawy MA, et al. The role of nuclear medicine in oncology.Ann Nucl Med 1992; 6:131–136.

    PubMed  CAS  Google Scholar 

  13. Kitapci MT, Tastekin G, Turgut M, Caner B, Kars A, Barista I, et al. Preoperative localization of parathyroid carcinoma using Tc-99m MIBI.Clin Nucl Med 1993; 18:217–219.

    Article  PubMed  CAS  Google Scholar 

  14. Irvin GL 3rd, Prudhomme DL, Deriso GT, Sfakianakis G, Chandarlapaty SK. A new approach to parathyroidectomy.Ann Surg 1994; 219:579–581.

    Article  Google Scholar 

  15. Itoh K, Ishizuka R. Tc-99m-MIBI scintigraphy for recurrent hyperparathyroidism after total parathyroidectomy with autograft.Ann Nucl Med 2003; 17:315–320.

    PubMed  Google Scholar 

  16. Kiratli PO, Peksoy I, Erbas B, Gedikoglu G, Karabulut N. Technetium-99m pertechnetate uptake in ectopic parathyroid adenoma.Ann Nucl Med 1999; 13:113–115.

    PubMed  CAS  Google Scholar 

  17. Kojima T, Mizumura S, Kumita S, Kumazaki T, Teramoto A. Is technetium-99m-MIBI taken up by the normal pituitary gland? A comparison of normal pituitary glands and pituitary adenomas.Ann Nucl Med 2001; 15:321–327.

    PubMed  CAS  Google Scholar 

  18. Beauchesne P, Soler C. Correlation of99mTc-MIBI brain spect (functional index ratios) and survival after treatment failure in malignant glioma patients.Anticancer Res 2002; 22:3081–3085.

    PubMed  CAS  Google Scholar 

  19. Yamamoto Y, Nishiyama Y, Toyama Y, Kunishio K, Satoh K, Ohkawa M.99mTc-MIBI and201Tl SPET in the detection of recurrent brain tumours after radiation therapy.Nucl Med Commun 2002; 23:1183–1190.

    Article  PubMed  CAS  Google Scholar 

  20. Campeau RJ, Kronemer KA, Sutherland CM. Concordant uptake of Tc-99m sestamibi and Tl-201 in unsuspected breast tumor.Clin Nucl Med 1992; 17:936–937.

    Article  PubMed  CAS  Google Scholar 

  21. Burak Z, Argon M, Memis A, Erdem S, Balkan Z, Duman Y, et al. Evaluation of palpable breast masses with99Tcm- MIBI: a comparative study with mammography and ultra- sonography.Nucl Med Commun 1994; 15:604–612.

    PubMed  CAS  Google Scholar 

  22. Nishiyama Y, Yamamoto Y, Kawasaki Y, Satoh K, Takashima H, Ohkawa M, et al. Accumulation of Tc-99m MIBI in breast lymphoma: comparison with Ga-67 citrate.Ann Nucl Med 1996; 10:429–432.

    PubMed  CAS  Google Scholar 

  23. Ballinger JR, Sheldon KM, Boxen I, Erlichman C, Ling V. Differences between accumulation of99mTc-MIBI and201Tl- thallous chloride in tumour cells: role of P-glycoprotein.Q J Nucl Med 1995; 39:122–128.

    PubMed  CAS  Google Scholar 

  24. Hendrikse NH, Franssen EJ, van der Graaf WT, Meijer C, Piers DA, Vaalburg W, et al.99mTc-sestamibi is a substrate for P-glycoprotein and the multidrug resistance-associated protein.Br J Cancer 1998; 77:353–358.

    PubMed  CAS  Google Scholar 

  25. Vergote J, Moretti JL, de Vries EG, Garnier-Suillerot A. Comparison of the kinetics of active efflux of99mTc-MIBI in cells with P-glycoprotein-mediated and multidrug-resistance protein-associated multidrug-resistance phenotypes.Eur J Biochem 1998; 252:140–146.

    Article  PubMed  CAS  Google Scholar 

  26. Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM. Functional imaging of multidrug- resistant P-glycoprotein with an organotechnetium complex.Cancer Res 1993; 53:977–984.

    PubMed  CAS  Google Scholar 

  27. Rao VV, Chiu ML, Kronauge JF, Piwnica-Worms D. Expression of recombinant human multidrug resistance P- glycoprotein in insect cells confers decreased accumulation of technetium-99m-sestamibi.J Nucl Med 1994; 35:510–515.

    PubMed  CAS  Google Scholar 

  28. Ballinger JR, Bannerman J, Boxen I, Firby P, Hartman NG, Moore MJ. Technetium-99m-tetrofosmin as a substrate for P-glycoprotein:in vitro studies in multidrug-resistant breast tumor cells.J Nucl Med 1996; 37:1578–1582.

    PubMed  CAS  Google Scholar 

  29. Bae KT, Piwnica-Worms D. Pharmacokinetic modeling of multidrug resistance P-glycoprotein transport of gamma- emitting substrates.Q J Nucl Med 1997; 41:101–110.

    PubMed  CAS  Google Scholar 

  30. Crankshaw CL, Marmion M, Luker GD, Rao V, Dahlheimer J, Burleigh BD, et al. Novel technetium (III)-Q complexes for functional imaging of multidrug resistance (MDR1) P- glycoprotein.J Nucl Med 1998; 39:77–86.

    PubMed  CAS  Google Scholar 

  31. Atkins HL, Budinger TF, Lebowitz E, Ansari AN, Greene MW, Fairchild RG, et al. Tl-201 for medical use. Part 3: Human distribution and physical imaging properties.J Nucl Med 1977; 18:133–140.

    PubMed  CAS  Google Scholar 

  32. Kaplan WD, Takvorian T, Morris JH, Rumbaugh CL, Connolly BT, Atkins HL. Tl-201 brain tumor imaging: a comparative study with pathologic correlation.J Nucl Med 1987; 28:47–52.

    PubMed  CAS  Google Scholar 

  33. Waxman AD, Ramanna L, Said J. Tl scintigraphy in lymphoma: relationship to gallium-67.J Nucl Med 1989; 30:915.

    Google Scholar 

  34. Britten JS, Blank M. Tl activation of the (Na+-K+)-activated ATPase of rabbit kidney.Biochim Biophys Acta 1968; 159:160–166.

    PubMed  CAS  Google Scholar 

  35. Sessler MJ, Geck P, Maul FD, Hor G, Munz DL. New aspects of cellular Tl uptake: Tl+-Na+-2Cl--cotransport is the central mechanism of ion uptake.Nuklearmedizin 1986; 25:24–247.

    PubMed  CAS  Google Scholar 

  36. Ando A, Ando I, Katayama M, Sanada S, Hiraki T, Mori H, et al. Biodistributions of201Tl in tumor bearing animals and inflammatory lesion induced animals.Eur J Nucl Med 1987; 12:567–572.

    Article  PubMed  CAS  Google Scholar 

  37. Melnick RL, Monti LG, Motzkin SM. Uncoupling of mitochondrial oxidative phosphorylation by Tl.Biochem Biophys Res Commun 1976; 69:68–73.

    Article  PubMed  CAS  Google Scholar 

  38. Skulskii IA, Savina MV, Glasunov VV, Saris NE. Electrophoretic transport of Tl+ in mitochondria.J Membr Biol 1978; 44:187–194.

    Article  PubMed  CAS  Google Scholar 

  39. Llaurado JG, Madden JA, Smith GA. Effects of dietary magnesium deficiency on Tl-201 kinetics and distribution in rat myocardium: concise communication.J Nucl Med 1983; 24:402–407.

    PubMed  CAS  Google Scholar 

  40. Gachon P, Moins N, Maublant JC, Ross MR, Davidson WD, Mena I. Relationship between20lTl uptake and oxidative metabolism in cultured myocardial cells.Nucl Med Commun 1986; 7:59–64.

    Article  PubMed  CAS  Google Scholar 

  41. Fukumoto M, Kurohara A, Yoshimura N, Yoshida D, Akagi N, Yoshida S. Relationship between ATP synthesis and201Tl uptake in transformed and non-transformed cell lines.Nucl Med Commun 1998; 19:1169–1175.

    Article  PubMed  CAS  Google Scholar 

  42. Piwnica-Worms D, Kronauge JF, Chiu ML. Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium (I) in cultured chick myocardial cells. Mitochondrial and plasma membrane potential dependence.Circulation 1990; 82:1826–1838.

    PubMed  CAS  Google Scholar 

  43. Crane P, Laliberte R, Heminway S, Thoolen M, Orlandi C. Effect of mitochondrial viability and metabolism on technetium- 99m-sestamibi myocardial retention.Eur J Nucl Med 1993; 20:20–25.

    Article  PubMed  CAS  Google Scholar 

  44. Backus M, Piwnica-Worms D, Hockett D, Kronauge J, Lieberman M, Ingram P, et al. Microprobe analysis of Tc- MIBI in heart cells: calculation of mitochondrial membrane potential.Am J Physiol 1993; 265:C178–187.

    Google Scholar 

  45. Chernoff DM, Strichartz GR, Piwnica-Worms D. Membrane potential determination in large unilamellar vesicles with hexakis (2-methoxyisobutylisonitrile) technetium (I).Biochim Biophys Acta 1993; 22: 1147:262–266.

    Google Scholar 

  46. Mousa SA, Williams SJ, Sands H. Characterization ofin vivo chemistry of cations in the heart.J Nucl Med 1987; 28:1351–1357.

    PubMed  CAS  Google Scholar 

  47. Delmon-Moingeon LI, Piwnica-Worms D, Van denAbbeeleAD, Holman BL, Davison A, Jones AG. Uptake of the cation hexakis (2-methoxyisobutylisonitrile)-technetium- 99m by human carcinoma cell linesin vitro. Cancer Res 1990; 50:2198–2202.

    PubMed  CAS  Google Scholar 

  48. Lichtshtein D, Kaback HR, Blume AJ. Use of a lipophilic cation for determination of membrane potential in neuro- blastoma-glioma hybrid cell suspensions.Proc Natl Acad Sci USA 1979; 76:650–654.

    Article  PubMed  CAS  Google Scholar 

  49. Sinusas AJ, Shi Q, Saltzberg MT, Vitols P, Jain D, Wackers FJ, et al. Technetium-99m-tetrofosmin to assess myocardial blood flow: experimental validation in an intact canine model of ischemia.J Nucl Med 1994; 35:664–671.

    PubMed  CAS  Google Scholar 

  50. Younes A, Songadele JA, Maublant J, Platts E, Pickett R, Veyre A. Mechanism of uptake of technetium-tetrofosmin. II: Uptake into isolated adult rat heart mitochondria.J Nucl Cardiol 1995; 2:327–333.

    Article  PubMed  CAS  Google Scholar 

  51. Koplan BA, Beller GA, Ruiz M, Yang JY, Watson DD, Glover DK. Comparison between Tl-201 and technetium- 99m-tetrofosmin uptake with sustained low flow and profound systolic dysfunction.J Nucl Med 1996; 37:1398- 1402.

    PubMed  CAS  Google Scholar 

  52. Arbab AS, Koizumi K, Toyama K, Araki T. Uptake of technetium-99m-tetrofosmin, technetium-99tn-MIBI and Tl-201 in tumor cell lines.J Nucl Med 1996; 37:1551–1556.

    PubMed  CAS  Google Scholar 

  53. Venuta S, Ferraiuolo R, Morrone G, Ambesi-Impiombato FS, Mansi L, Salvatore M. The uptake of201Tl in normal and transformed thyroid cell lines.J Nucl Med Allied Sci 1979; 23:163–166.

    PubMed  CAS  Google Scholar 

  54. Platts EA, North TL, Pickett RD, Kelly JD. Mechanism of uptake of technetium-tetrofosmin. I: Uptake into isolated adult rat ventricular myocytes and subcellular localization.J Nucl Cardiol 1995; 2:317–326.

    Article  PubMed  CAS  Google Scholar 

  55. Nakamura K, Sammiya T, Hashimoto J, Ishibashi R, Matsumoto K, Kubo A. Comparison of cationic myocardial perfusion agents: characteristics of accumulation in cultured smooth muscle cells.Ann Nucl Med 1996; 10:375- 381.

    PubMed  CAS  Google Scholar 

  56. Chen WS, Luker KE, Dahlheimer JL, Pica CM, Luker GD, Piwnica-Worms D. Effects of MDR1 and MDR3 P-glyco- proteins, MRP1, and BCRP/MXR/ABCP on the transport of (99m)Tc-tetrofosmin.Biochem Pharmacol 2000; 60:413–426.

    Article  PubMed  CAS  Google Scholar 

  57. Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line.Science 1992; 258:1650–1654.

    Article  PubMed  CAS  Google Scholar 

  58. Nakamura K, Sugawara I, Satake S, Kubo A, Takami H. Comparison of99mTc-MIBI and99mTc-Tetrofosmin uptakes in anaplastic thyroid carcinoma.Eur J Nucl Med 1996; 23:1142. [Abstract]

    Google Scholar 

  59. De Jong M, Bernard BF, Breeman WA, Ensing G, Benjamins H, Bakker WH, et al. Comparison of uptake of99mTc-MIBI,99mTc-tetrofosmin and99mTc-Q12 into human breast cancer cell lines.Eur JNucl Med 1996; 23:1361–1366.

    Article  Google Scholar 

  60. Molteni SN, Seregni E, Botti C, Martinetti A, Ferrari L, Crippa F, et al. The breast cancer cell line MCF7 as a model of99mTc-SestaMIBI,99mTc-tetrofosmin and99mTc- Medronate incorporation.Anticancer Res 1999; 19:255- 259.

    PubMed  CAS  Google Scholar 

  61. Flamen P, Bossuyt A, Franken PR. Technetium-99m- tetrofosmin in dipyridamole-stress myocardial SPECT imaging: intraindividual comparison with technetium- 99m-sestamibi.J Nucl Med 1995; 36:2009–2015.

    PubMed  CAS  Google Scholar 

  62. Widding A, Hesse B, Gadsboll N. Technetium-99m sestamibi and tetrofosmin myocardial single-photon emission tomography: can we use the same reference data base?Eur J Nucl Med 1997; 24:42–45.

    Article  PubMed  CAS  Google Scholar 

  63. Higley B, Smith FW, Smith T, Gemmell HG, Das Gupta P, Gvozdanovic DV, et al. Technetium-99m-1,2-bis[bis(2- ethoxyethyl)phosphino]ethane: human biodistribution, dosimetry and safety of a new myocardial perfusion imaging agent.J Nucl Med 1993; 34:30–38.

    PubMed  CAS  Google Scholar 

  64. Zaret BL, Rigo P, Wackers FJ, Hendel RC, Braat SH, Iskandrian AS, et al. Myocardial perfusion imaging with99mTc tetrofosmin. Comparison to201Tl imaging and coronary angiography in a phase III multicenter trial. Tetrofosmin International Trial Study Group.Circulation 1995; 91:313–319.

    PubMed  CAS  Google Scholar 

  65. Jain D, Wackers FJ, Mattera J, McMahon M, Sinusas AJ, Zaret BL. Biokinetics of technetium-99m-tetrofosmin: myocardial perfusion imaging agent: implications for a one-day imaging protocol.J Nucl Med 1993; 34:1254- 1259.

    PubMed  CAS  Google Scholar 

  66. Tjuvajev JG, Macapinlac HA, Daghighian F, Scott AM, Ginos JZ, Finn RD, et al. Imaging of brain tumor proliferative activity with iodine-131-iododeoxyuridine.J Nucl Med 1994; 35:1407–1417.

    PubMed  CAS  Google Scholar 

  67. Ishibashi M, Taguchi A, Sugita Y, Monta S, Kawamura S, Umezaki N, et al. Tl-201 in brain tumors: Relationship between tumor cell activity in astrocytic tumor and proliferating cell nuclear antigen.J Nucl Med 1995; 36:2201- 2206.

    PubMed  CAS  Google Scholar 

  68. Hayashi T, Kumabe T, Jokura H, Fujihara K, Shiga Y, Watanabe M, et al. Inflammatory demyelinating disease mimicking malignant glioma.J Nucl Med 2003; 44:565- 569.

    PubMed  Google Scholar 

  69. Nadel HR. Tl-201 for oncologic imaging in children.Semin Nucl Med 1993; 23:243–254.

    Article  PubMed  CAS  Google Scholar 

  70. Gorniak RJ, Kramer EL, McMeeking AA, Zagzag D. Tl- 201 uptake in cytomegalovirus encephalitis.J Nucl Med 1997; 38:1386–1388.

    PubMed  CAS  Google Scholar 

  71. Lee VW, Antonacci V, Tilak S, Fuller JD, Cooley TP. Intracranial mass lesions: Sequential Tl and gallium scintigraphy in patients with AIDS.Radiology 1999; 211:507- 512.

    PubMed  CAS  Google Scholar 

  72. Buchpiguel CA, Alavi JB, Alavi A, Kenyon LC. PET versus SPECT in distinguishing radiation encrosis from tumor recurrence in the brain.J Nucl Med 1995; 36:159–164.

    PubMed  CAS  Google Scholar 

  73. Carvalho PA, Schwartz RB, Alexander E 3rd, Garada BM, Zimmerman RE, Loeffler JS, et al. Detection of recurrent gliomas with quantitative Tl-201/technetium-99m HMPAO single-photon emission computerized tomography.J Neurosurg 1992; 77:565–570.

    Article  PubMed  CAS  Google Scholar 

  74. Moody EB, Hodes JE, Walsh JW, Thornsberry S. Tl-avid cerebral radiation necrosis.Clin Nucl Med 1994; 19:611- 613.

    Article  PubMed  CAS  Google Scholar 

  75. Wijaya J, Bernard E, Roach P, Little N. Moderate Tl-201 chloride uptake in cerebral infarction.Clin Nucl Med 2001; 26:730–731.

    Article  PubMed  CAS  Google Scholar 

  76. Arisaka Y, Kodama Y, Ayabe K, Higashi K, Taki S, Oguchi M, et al. Tumor-like accumulation on Tl-201 SPECT in subacute hemorrhagic cerebral infarction.Clin Nucl Med 2001; 26:357–358.

    Article  PubMed  CAS  Google Scholar 

  77. Tomura N, Hirano H, Kato K, Watarai J, Ito Y, Mineura K. Unexpected accumulation of Tl-201 in cerebral infarction.J Comput Assist Tomogr 1998; 22:126–129.

    Article  PubMed  CAS  Google Scholar 

  78. Bernat I, Toth G, Kovacs L. Tumour-like Tl-201 accumulation in brain infarcts, an unexpected finding on single- photon emission tomography.Eur J Nucl Med 1994; 21:191–195.

    Article  PubMed  CAS  Google Scholar 

  79. Larsson SA, Bergstrand G, Bergstedt H, Berg J, Flygare O, Schnell PO, et al. A special cut-off gamma camera for high- resolution SPECT of the head.J Nucl Med 1984; 25:1023- 1030.

    PubMed  CAS  Google Scholar 

  80. Yui N, Togawa T, Kinoshita F, Shimada F, Akiyama Y. Assessment of skull base involvement of nasopharyngeal carcinoma by bone SPECT using three detectors system.KAKU IGAKU (Jpn J Nucl Med) 1992; 29:37–47.

    CAS  Google Scholar 

  81. Fukumoto M, Osaki Y, Yoshida D, Ogawa Y, Fujiwara M, Miyazaki N, et al. Dual-isotope SPECT diagnosis of a skull- base metastasis causing isolated unilateral hypoglossal nerve palsy.Ann Nucl Med 1998; 12:213–216.

    PubMed  CAS  Google Scholar 

  82. Fukumoto M, Tsuboi N, Yoshimura N, Kurohara A, Yoshida D, Inomata T, et al. Dual isotope SPECT in malignant Jacod’s syndrome.Clin Nucl Med 1998; 23:437–440.

    Article  PubMed  CAS  Google Scholar 

  83. Fukumoto M, Yoshida S, Yoshida D, Kishimoto S. Dualisotope SPECT of skull-base invasion of head and neck tumors.J Nucl Med 1995; 36:1741–1746.

    PubMed  CAS  Google Scholar 

  84. Waxman AD, Ramanna L, Memsic LD, Foster CE, Silberman AW, Gleischman SH, et al. Tl scintigraphy in the evaluation of mass abnormalities of the breast.J Nucl Med 1993; 34:18–23.

    PubMed  CAS  Google Scholar 

  85. Lee VW, Sax EJ, McAneny DB, Pollack S, Blanchard RA, Beazley RM, et al. A complementary role for Tl-201 scintigraphy with mammography in the diagnosis of breast cancer.J Nucl Med 1993; 34:2095–2100.

    PubMed  CAS  Google Scholar 

  86. Maurer AH, Caroline DF, Jadali FJ, Manzone TA, Maier WP, Au FC, et al. Limitations of craniocaudal Tl-201 and technetium-99m-sestamibi mammoscintigraphy.J Nucl Med 1995; 36:1696–1700.

    PubMed  CAS  Google Scholar 

  87. Abdel-Dayem HM, Bag R, DiFabrizio L, Aras T, Turoglu HT, Kempf JS, et al. Evaluation of sequential Tl and gallium scans of the chest in AIDS patients.J Nucl Med 1996; 37:1662–1667.

    PubMed  CAS  Google Scholar 

  88. Abdel-Dayem HM. Role of Tl-201 chloride and Tc-99m- sestamibi in tumor imaging.Nucl Med Annual 1994; 181–234. (p. 204)

  89. Chin BB, Zukerberg BW, Buchpiguel C, Alavi A. Tl-201 uptake in lung cancer.J Nucl Med 1995; 36:1514–1519.

    PubMed  CAS  Google Scholar 

  90. Higashi K, Nishikawa T, Seki H, Oguchi M, Nambu Y, Ueda Y, et al. Comparison of fluorine-18-FDG PET and Tl- 201 SPECT in evaluation of lung cancer.J Nucl Med 2001; 42:1489–1496.

    PubMed  CAS  Google Scholar 

  91. Kubota K. Changing pattern of lung cancer and its imaging:201Tl SPECT versus [(18F)]FDGPET. J Nucl Med 2001; 42:1497–1498.

    PubMed  CAS  Google Scholar 

  92. Waxman AD, Eller D, Ashook G, Ramanna L, Brachman M, Heifetz L, et al. Comparison of gallium-67-citrate and Tl-201 scintigraphy in peripheral and intrathoracic lymphoma.J Nucl Med 1996; 37:46–50.

    PubMed  CAS  Google Scholar 

  93. Abdel-Dayem HM. Role of Tl-201 chloride and Tc-99m- sestamibi in tumor imaging.Nucl Med Annual 1994; 181–234. (p. 203)

  94. Ohtomo K, Terui S, Yokoyama R, Abe H, Terauchi T, Maeda G, et al. Tl-201 scintigraphy to assess effect of chemotherapy in osteosarcoma.J Nucl Med 1996; 37:1444–1448.

    PubMed  CAS  Google Scholar 

  95. Sumiya H, Taki J, Tsuchiya H, Nonomura A, Miyauchi T, Tonami N. Midcourse Tl-201 scinitigraphy to predict tumor response in bone and soft tissue tumors.J Nucl Med 1998; 39:1600–1604.

    PubMed  CAS  Google Scholar 

  96. Mruck S, Pfahlberg A, Papadopoulos T, Stremmel C, Kuweit T. Uptake of201Tl into primary cell cultures from human thyroid tissue in multiplied by TSH.J Nucl Med 2002; 43:145–152.

    PubMed  CAS  Google Scholar 

  97. Abdel-Dayem HM. Role of Tl-201 chloride and Tc-99m- sestamibi in tumor imaging.Nucl Med Annual 1994; 181–234. (p. 212)

  98. Shiga T, Tsukamoto E, Nakada K, Morita K, Kato T, Mabuchi M, et al. Comparison of18F-FDG,131I-Na, and201Tl in diagnosis of recurrent or metastatic thyroid cancer.J Nucl Med 2001; 42:414–419.

    PubMed  CAS  Google Scholar 

  99. Brendel AJ, Guyot M, Jeandot R, Lefort G, Manciet G. Tl- 201 imaging in the follow-up of differentiated thyroid carcinoma.J Nucl Med 1988; 29:1515–1520.

    PubMed  CAS  Google Scholar 

  100. Unal S, Menda Y, Adalet I, Boztepe H, Ozbey N, Alagol F, et al. Tl-201, Technetium-99m-tetrofosmin and Iodine- 131 in detecting differentiated thyroid carcinoma metastases.J Nucl Med 1998; 39:1897–1902.

    PubMed  CAS  Google Scholar 

  101. Tsubuku M, Hayashi S, Itoh K, Kaneko I, Shimada M, Akasaka Y, et al. Clear skeletal visualization on whole body201Tl-chloride scintigraphy: a case of prostatic cancer with diffuse bone metastases.KAKU IGAKU (Jpn J Nucl Med) 1995; 32:1249–1253.

    CAS  Google Scholar 

  102. Del Vecchio S, Ciarmiello A, Pace L, Potena MI, Carriero MV, Mainolfi C, et al. Fractional retention of Tc-99m- Sestamibi as an index of P-glycoprotein expression in untreated breast cancer patients.J Nucl Med 1997; 38:1348–1351.

    Google Scholar 

  103. Kostakoglu L, Elahi N, Kiratli P, Ruacan S, Sayek I, Baltali E, et al. Clinical validation of the influence of P- glycoprotein on Tc-99m-sestamibi uptake in malignant tumors.J Nucl Med 1997; 38:1003–1008.

    PubMed  CAS  Google Scholar 

  104. Pinkas L, Robinson D, Halperin N, Mindlin L, Cohenpour M, Baumer M, et al.99mTc-MIBI scintigraphy in musculo- skeletal tumors.J Nucl Med 2001; 42:33–37.

    PubMed  CAS  Google Scholar 

  105. Haugen BR, Lin EC. Isotope imaging for metastaic thyroid cancer.Endocrinol Metab Clin North Am 2001; 30:469- 492.

    Article  PubMed  CAS  Google Scholar 

  106. Caner B, Kitapcl M, Unlu M, Erbengi G, Calikoglu T, Gogus T, et al. Technetium-99m-MIBI uptake in benign and malignant bone lesions: A comparative study with technetium-99m-MDP.J Nucl Med 1992; 33:319–324.

    PubMed  CAS  Google Scholar 

  107. Gorlick R, Liao AC, Antonescu C, Huvos AG, Healey JH, Sowers R, et al. Lack of correlation of functional scintigraphy with (99m)technetium-methoxyisobutylisonitrile with histological necrosis following induction chemotherapy or measures of P-glycoprotein expression in high- grade osteosarcoma.Clin Cancer Res 2001; 7:3065- 3070.

    PubMed  CAS  Google Scholar 

  108. Carvalho PA, Chiu ML, Kronauge JF, Kawamura M, Jones AG, Holman BL, et al. Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts.J Nucl Med 1992; 33:1516–1522.

    PubMed  CAS  Google Scholar 

  109. Kirton A, Kloiber R, Rigel J, Wolff J. Evaluation of pediatric CNS malignancies with (99m)Tc-methoxy- isobutylisonitrile SPECT.J Nucl Med 2002; 43:1438- 1443.

    PubMed  Google Scholar 

  110. Naddaf SY, Akisik MF, Aziz M, Omar WS, Hirschfeld A, Masdeu J, et al. Comparison between201Tl-chloride and99Tcm-sestamibi SPET brain imaging for differentiating intracranial lymphoma from non-malignant lesions in AIDS patients.Nucl Med Commun 1998; 19:47–53.

    Article  PubMed  CAS  Google Scholar 

  111. Imbriaco M, Del Vecchio S, Riccardi A, Pace L, Di Salle F, Di Gennaro F, et al. Scintimammography with99mTc- MIBI versus dynamic MRI for non-invasive characterization of breast masses.Eur J Nucl Med 2001; 28:56–63.

    Article  PubMed  CAS  Google Scholar 

  112. Polan RL, Klein BD, Richman RH. Scintimammography in patients with minimal mammographic or clinical findings.Radiographics 2001; 21:641–655.

    PubMed  CAS  Google Scholar 

  113. Khalkhali I, Baum JK, Villanueva-Meyer J, Edell SL, Hanelin LG, Lugo CE, et al.99mTc Sestamibi breast imaging for the examination of patients with dense and fatty breasts: multicenter study.Radiology 2001; 222:149–155.

    Article  Google Scholar 

  114. Massardo T, Alonso O, Kabasakal L, Llamas-Olier A, Shankar UR, Zhu H, et al. Diagnostic value of99mTc- methylene diphosphonate and99mTc-pentavalent DMSA compared with99mTc-sestamibi for palpable breast lesions.J Nucl Med 2002; 43:882–888.

    PubMed  CAS  Google Scholar 

  115. Piccolo S, Muto P. One step forward.J Nucl Med 2002; 43:916–917.

    PubMed  Google Scholar 

  116. Waxman AD. The role of Tc-99m-methoxyisobutylisonitrile in imaging breast cancer.Semin Nucl Med 1997; 27:40–54.

    Article  PubMed  CAS  Google Scholar 

  117. Buscombe JR, Cwikla JB, Holloway B, Hilson AJ. Prediction of the usefulness of combined mammography and scintimammography in suspected primary breast cancer using ROC curves.J Nucl Med 2001; 42:3–8.

    PubMed  CAS  Google Scholar 

  118. Yutani K, Shiba E, Kusuoka H, Tatsumi M, Uehara T, Taguchi T, et al. Comparison of FDG-PET with MIBI- SPECT in the detection of breast cancer and axillary lymph node metastasis.J Comput Assist Tomogr 2000; 24:274- 280.

    Article  PubMed  CAS  Google Scholar 

  119. Alonso O, Massardo T, Delgado LB, Horvath J, Kabasakal L, Llamas-Olier A, et al. Is99mTc-sestamibi scintimammography complementary to conventional mammography for detecting breast cancer in patients with palpable masses?J Nucl Med 2001; 42:1614–1621.

    PubMed  CAS  Google Scholar 

  120. Taillefer R. The role of99mTc-sestamibi and other conventional radiopharmaceuticals in breast cancer diagnosis.Semin Nucl Med 1999; 29:16–40.

    Article  PubMed  CAS  Google Scholar 

  121. Brem RF, Schoonjans JM, Kieper DA, Majewski S, Goodman S, Civelek C. High-resolution scintimammography: a pilot study.J Nucl Med 2002; 43:909–915.

    PubMed  Google Scholar 

  122. Khalkhali I, Cutrone J, Mena I, Diggles L, Venegas R, Vargas H, et al. Technetium-99m-sestamibi scintimammography of breast lesions: clinical and pathological follow- up.J Nucl Med 1995; 36:1784–1789.

    PubMed  CAS  Google Scholar 

  123. Villanueva-Meyer J, Leonard MH Jr, Briscoe E, Cesani F, Ali SA, Rhoden S, et al. Mammoscintigraphy with technetium- 99m-sestamibi in suspected breast cancer.J Nucl Med 1996; 37 (6):926–930.

    PubMed  CAS  Google Scholar 

  124. Khalkhali I, Baum JK, Villanueva-Meyer J, Edell SL, Hanelin LG, Lugo CE, et al. Diagnostic accuracy of 99m- Tc-Sestamibi breast imaging: Multicenter trial results.J Nucl Med 2000; 41:1973–1979.

    PubMed  CAS  Google Scholar 

  125. Prats E, Aisa F, Abos MD, Villavieja L, Garcia-Lopez F, Asenjo MJ, et al. Mammography and Tc-99m-MIBI scintimammography in suspected breast cancer.J Nucl Med 1999; 40:296–301.

    PubMed  CAS  Google Scholar 

  126. Khalkhali I, Cutrone JA, Mena IG, Diggles LE, Venegas RJ, Vargas HI, et al. Scintimammography: the complementary role of Tc-99m sestamibi prone breast imaging for the diagnosis of breast carcinoma.Radiology 1995; 196:421–426.

    PubMed  CAS  Google Scholar 

  127. Taillefer R, Robidoux A, Lambert R, Turpin S, Laperriere J. Technetium-99m-sestamibi prone scintimammography to detect primary breast cancer and axillary lymph node involvement.J Nucl Med 1995; 36:1758–1765.

    PubMed  CAS  Google Scholar 

  128. Taillefer R, Robidoux A, Turpin S, Lambert R, Cantin J, Leveille J. Metastatic axillary lymph node technetium- 99m-MIBI imaging in primary breast cancer.J Nucl Med 1998; 39:459–464.

    PubMed  CAS  Google Scholar 

  129. Tiling R, Sommer H, Pechmann M, Moser R, Kress K, PflugerT, et al. Comparison of Technetium-99m-sestamibi scintimammography with contrast-enhanced MRI for diagnosis of breast lesions.J Nucl Med 1997; 38:58–62.

    PubMed  CAS  Google Scholar 

  130. Pisano ED, Parham CA. Digital mammography, sestamibi breast scintigraphy, and positron emission tomography breast imaging.Radiol Clin North Am 2000; 38:861–869.

    Article  PubMed  CAS  Google Scholar 

  131. Sciuto R, Pasqualoni R, Bergomi S, Petrilli G, Vici P, Belli F, et al. Prognostic value of99mTc Sestamibi washout in predicting response to locally advanced breast cancer to neoadjuvant chemotherapy.J Nucl Med 2002; 43:745- 751.

    PubMed  Google Scholar 

  132. Taillefer R, Boucher Y, Potvin C, Lambert R. Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-sestamibi (double-phase study).J Nucl Med 1992; 33:1801–1807.

    PubMed  CAS  Google Scholar 

  133. Arbab AS, Koizumi K, Hemmi A, Toyama K, Arai T, Yoshitomi T, et al. Tc-99m-MIBI scintigraphy for detecting parathyroid adenoma and hyperplasia.Ann Nucl Med 1997; 11:45–49.

    Article  PubMed  CAS  Google Scholar 

  134. Carpentier A, Jeannotte S, Verreault J, Lefebvre B, Bisson G, Mongeau CJ, et al. Preoperative localization of parathyroid lesions in hyperparathyroidism: relationship between technetium-99m-MIBI uptake and oxyphil cell content.J Nucl Med 1998; 39:1441–1444.

    PubMed  CAS  Google Scholar 

  135. Miyamoto S, Kasagi K, Misaki T, Alam MS, Konishi J. Evaluation of technetium-99m-MIBI scintigraphy in metastatic differentiated thyroid carcinoma.J Nucl Med 1998; 38:352–356.

    Google Scholar 

  136. Seabold JE, Gurll N, Schurrer ME, Aktay R, Kirchner PT. Comparison of99mTc-Methoxyisobutyl Isonitrile and201Tl scintigraphy for the detection of residual thyroid cancer after131I ablative therapy.J Nucl Med 1999; 40:1434- 1440.

    PubMed  CAS  Google Scholar 

  137. Balon HR, Fink-Bennet TD, Stoffer SS. Technetium- 99m-sestamibi uptake by recurrent hurthle cell carcinoma of the thyroid.J Nucl Med 1992; 33:1393–1395.

    PubMed  CAS  Google Scholar 

  138. O’Driscoll CM, Baker F, Casey MJ, Duffy GJ. Localization of recurrent medullary thyroid carcinoma with technetium- 99m-methoxyisobutylnitrile scintigraphy: A case report.J Nucl Med 1991; 32:2281–2283.

    PubMed  CAS  Google Scholar 

  139. Choi JY, Kim SE, Shin HJ, Kim BT, Kim JH. Brain tumor imaging with99mTc-tetrofosmin: comparison with201Tl,99mTc-MIBI, and18F-fluorodeoxyglucose.J Neurooncol 2000; 46:63–70.

    Article  PubMed  CAS  Google Scholar 

  140. Soricelli A, Cuocolo A, Varrone A, Discepolo A, Tedeschi E, Mainenti PP, et al. Technetium-99m-tetrofosmin uptake in brain tumors by SPECT: comparison with Tl-201 imaging.J Nucl Med 1998; 39:802–806.

    PubMed  CAS  Google Scholar 

  141. Perek N, Prevot N, Koumanov F, Frere D, Sabido O, Beauchesne P, et al. Involvement of the glutathione S- conjugate compounds and the MRP protein in Tc-99m- tetrofosmin and Tc-99m-sestamibi uptake in glioma cell lines.Nucl Med Biol 2000; 27:299–307.

    Article  PubMed  CAS  Google Scholar 

  142. Lind P, Gallowitsch HJ, Langsteger W, Kresnik E, Mikosch P, Gomez I. Technetium-99m-tetrofosmin whole-body scintigraphy in the follow-up of differentiated thyroid cancer.J Nucl Med 1997; 38:348–352.

    PubMed  CAS  Google Scholar 

  143. Gallowitsch HJ, Mikosch P, Kresnik E, Unterweger O, Gomez I, Lind P. Thyroglobulin and low-dose iodine-131 and technetium-99m-tetrofosmin whole-body scintigraphy in differentiated thyroid carcinoma.J Nucl Med 1998; 39:870–875.

    PubMed  CAS  Google Scholar 

  144. Kao CH, Hsieh JF, Tsai SC, Ho YJ, Changlai SP, Lee JK. Paclitaxel-based chemotherapy for non-small cell lung cancer: Predicting the response with99mTc-tetrofosmin chest imaging.J Nucl Med 2001; 42:17–20.

    PubMed  CAS  Google Scholar 

  145. Fukumoto M, et al. Scintigraphic prediction of resistance to radiation and chemotherapy in patients with lung carcinoma: technetium 99m-tetrofosmin and Tl-201 dual single photon emission computed tomography study.Cancer 1999; 86:1470–1479.

    Article  PubMed  CAS  Google Scholar 

  146. Ishibashi M, Nishida H, Kumabe T, Morita S, Matoba F, Nomura G, et al. Tc-99m tetrofosmin. A new diagnostic tracer for parathyroid imaging.Clin Nucl Med 1995; 20:902–905.

    Article  PubMed  CAS  Google Scholar 

  147. Mansi L, Rambaldi PF, Marino G, Pecori B, Del VecchioE. Kinetics of Tc-99m sestamibi and Tc-99m tetrofosmin in a case of parathyroid adenoma.Clin Nucl Med 1996; 21:700–703.

    Article  PubMed  CAS  Google Scholar 

  148. Fjeld JG, Erichsen K, Pfeffer PF, Clausen OP, Rootwelt K. Technetium-99m-tetrofosmin for parathyroid scintigraphy: a comparison with sestamibi.J Nucl Med 1997; 38:831–834.

    PubMed  CAS  Google Scholar 

  149. Takeuchi N, Fukumoto M, Nishioka A, Akagi N, Murata Y, Takeuchi S, et al. Scintigraphic prediction of response to chemotherapy in patients with breast cancer: Technetium 99m-tetrofosmin and Tl-201 dual single photon emission computed tomography.Int J Oncol 2002; 20:53–58.

    PubMed  CAS  Google Scholar 

  150. Sun SS, Hsieh JF, Tsai SC, Ho YJ, Kao CH. Technetium- 99m tetrofosmin mammoscintigraphy findings related to the expression of P-glycoprotein mediated multidrug resistance.Anticancer Res 2000; 20:1467–1470.

    PubMed  CAS  Google Scholar 

  151. Fuster D, Vinolas N, Mallafre C, Pavia J, Martin F, Pons F. Tetrofosmin as predictors of tumour response.Q J Nucl Med 2003; 47:58–62.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukumoto, M. Single-photon agents for tumor imaging:201TI,99mTc-MIBI, and99mTc-tetrofosmin. Ann Nucl Med 18, 79–95 (2004). https://doi.org/10.1007/BF02985098

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02985098

Key words

Navigation