Skip to main content

Advertisement

Log in

Image distortion and correction in single photon emission CT

  • Review
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The task of single photon emission CT (SPECT) is to visualize the physiological function of various organs with the help of radiopharmaceuticals. But the projection data used for image reconstruction are distorted by several factors, making the reconstruction of a quantitative SPECT image very difficult in most cases. These factors include the attenuation and scattering of gamma rays, collimator aperture, data acquisition method, movement of organs, and washout of radiopharmaceuticals. This review article classifies the causes of the distortion in SPECT images and describes correction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Webb S, ed.The Physics of Medical Imaging, Actam Hilger, 1988: 142–318.

  2. Barrett HH, Swindell W.Radiological Imaging (Vol. 1), Academic Press, 1981: 259–290.

  3. Ell PJ, Holman BL, eds.Computed Emission Tomography, Oxford University Press, 1982.

  4. Sorenson JA, Phelps ME, eds.Physics in Nuclear Medicine (2nd edition),W.B. Saunders Company, 1987: 298–464.

  5. Herman GT, ed.Topics in Applied Physics. Image Reconstruction from Projections, Springer-Verlag, 1979: 147–246.

  6. Brooks RA, Dichiro G. Principles of computed assisted tomography (CAT) in radiographic and radioisotopic imaging.Phys Med Biol 1976; 5: 689–732.

    Google Scholar 

  7. Jaszczak RJ, Coleman RE. Single photon emission computed tomography (SPECT): principles and instrumentation.Invest Radiol 1985; 20: 897–910.

    PubMed  CAS  Google Scholar 

  8. Larsson SA. Gamma camera emission tomography: development and properties of a multi-sectional emission computed tomography system.Acta Radiol Suppl 1980; 363: 1–75.

    PubMed  CAS  Google Scholar 

  9. Sorenson JA. Method for quantitative measurement of radioactivityin vivo by whole-body counting. InInstrumentation in nuclear medicine, Vol. 2. Hine GJ, Sorenson JA (eds.), New York; Academic Press, 1974: 311–348.

    Google Scholar 

  10. Zaidi H. Quantitative SPECT: Recent developments in detector response, attenuation and scatter compensation techniques.Phsyca Medica 1996; XII: 101–117.

    Google Scholar 

  11. Parker JA. Quantitative SPECT: basic theoretical considerations.Semin Nucl Med 1989; 19: 3–12.

    PubMed  CAS  Google Scholar 

  12. Murphy PH. Quantitative emission tomography.J Nucl Med 1987; 5: 922–923.

    Google Scholar 

  13. Jaszczak RJ, Coleman RE, Whitehead FR. Physical factors affecting quantitative measurements using camera-based single photon emission computed tomography (SPECT).IEEE Trans Nucl Sci 1981; 28: 69–80.

    Google Scholar 

  14. Blockland KAK, Reiber HC, Pauwels EKJ. Quantitative analysis in single photon emission tomography (SPET).Eur J Nucl Med 1992; 19: 47–61.

    Google Scholar 

  15. Eisner RL, Nowak DJ, Pettigrew R, Fajman W, LaCroix KJ, Tsui BMW, et al. A comparison of 180 degrees and 360 degrees acquisition for attenuation-compensated thallium-201 SPECT images.J Nucl Med 1998; 39: 562–574.

    Google Scholar 

  16. Go RT, MacIntyre WJ, Houser TS, Pantoja M, Odonnell JK, Feiglin DH, et al. Clinical evaluation of 360 degrees and 180 degrees data sampling techniques for transaxial SPECT thallium-201 myocardial perfusion imaging.J Nucl Med 1985; 26: 695–706.

    PubMed  CAS  Google Scholar 

  17. Knesaurek K, King MA, Glick SJ, Penney BC. Investigation of causes of geometric distortion in 180 degrees and 360 degrees angular sampling in SPECT.J Nucl Med 1989; 30: 1666–1675.

    PubMed  CAS  Google Scholar 

  18. Tamaki N, Mukai T, Ishii Y, Fujita T, Yamamoto K, Minato K, et al. Comparative study of thallium emission myocardial tomography with 180 degrees and 360 degrees data collection.J Nucl Med 1982; 23: 661–666.

    PubMed  CAS  Google Scholar 

  19. Nuyts J, Dupomt P, Van den Maegdenbergh V, Vleugels S, Suetens P, Mortelmans L. A study of heart-liver artifacts in emission tomography.J Nucl Med 1995; 36: 133–139.

    PubMed  CAS  Google Scholar 

  20. LaCroix KJ, Tsui BMW, Hasegawa BH. A comparison of 180 degrees and 360 degrees acquisition for attenuation-compensated thallium-201 SPECT images.J Nucl Med 1998; 39: 562–574.

    PubMed  CAS  Google Scholar 

  21. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography.IEEE Trans Med Imag 1982; 1: 113–122.

    CAS  Google Scholar 

  22. Lange K, Carson R. EM reconstruction algorithm for emission and transmission tomography.J Compt Assist Tomogr 1984; 8: 306–316.

    CAS  Google Scholar 

  23. Vardi Y, Shepp LA, Kaufman L. A statistical model for positron emission tomography.J Amer Statist Assoc 1985; 80: 8–37.

    Google Scholar 

  24. Lange K, Bahn M, Little R. A theoretical study of some maximum likelihood algorithms for emission and transmission tomography.IEEE Trans Med Imag 1987; 6: 106–114.

    CAS  Google Scholar 

  25. Geman S, Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian reconstruction of images.IEEE Trans Pattern and Machine Intell 1984; 6: 721–741.

    Google Scholar 

  26. Geman S, McClure D. Bayesian image analysis: An application to single photon emission tomography.Proc Amer Statist Assoc Stat Comp 1985; Sect: 12–18.

  27. Levitan E, Herman GT. A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography.IEEE Trans Med Imag 1987; 6: 185–192.

    CAS  Google Scholar 

  28. Lalush DS, Tsui BMW. Simulation evaluation of Gibbs prior distributions for use in maximum a posteriori SPECT reconstructions.IEEE Trans Med Imag 1992; 11: 267–275.

    CAS  Google Scholar 

  29. Hudson HM, Larkin R. Accelerated image reconstruction using ordered subsets of projection data.IEEE Trans Med Imag 1994; 13: 601–609.

    CAS  Google Scholar 

  30. Byrne CL. Block-iterative methods for image reconstruction from projections.IEEE Trans Imag Proc 1996; 5: 792–794.

    CAS  Google Scholar 

  31. Byrne CL. Accelerating the EMML algorithm and rescaled iterative algorithms by rescaled block-iterative method.IEEE Trans Imag Proc 1998; 7: 100–109.

    CAS  Google Scholar 

  32. Takahashi M, Ogawa K. Selection of projection set and the ordered of calculation in ordered subsets expectation maximization method. InIEEE Nucl Sci Symp and Med Imag Conf Rec, vol. 2, 1997: 1408–1412.

  33. Takahashi Y, Murase K, Mochizuki T, Higashino H, Sugawara Y, Kinda A. Evaluation of the number of SPECT projections in the ordered subsets-expectation maximization image reconstruction method.Ann Nucl Med 2003; 17: 525–530.

    PubMed  Google Scholar 

  34. Tsui BMW, Segars WP, Lalush DS. Effects of Upward Creep and Respiratory Motions in Myocardial SPECT.IEEE Trans Nucl Sci 2000; 47: 1192–1195.

    Google Scholar 

  35. Kay DB, Keyes Jr JW. First order correction for absorption and resolution compensation in radionuclide Fourier tomography.J Nucl Med 1975; 16: 540–541.

    Google Scholar 

  36. Budinger TF. Quantitative nuclear medicine imaging, application of computers to the gamma camera and whole body scanner. InRecent Advances in Nuclear Medicine, Lawrence JH, ed. Vol. IV, New York; Grune & Stratton, 1974: 41–130.

    Google Scholar 

  37. Budinger TF, Gullberg GT. Transverse section reconstruction of gamma-ray emitting radionuclides in patients. InReconstruction tomography in diagnostic radiology and nuclear medicine. Ter-Pergossian MM, Phelps ME, Brownell GL, Cox Jr JR, Davis DO, Evans RG, eds. Baltimore; University Park Press, 1977: 315–342.

    Google Scholar 

  38. Budinger TF, Gullberg GT, Huesman RH. Emission computed tomography. InImage Reconstruction from Projections. Herman GT, ed. vol. 32, New York; Springer-Verlag, 1979: 147–246.

    Google Scholar 

  39. Chang LT. A method for attenuation correction in radionuclide computed tomography.IEEE Trans Nucl Sci 1978; 25: 638–643.

    Google Scholar 

  40. Chang LT. Attenuation correction and incomplete projection in single photon emission computed tomography.IEEE Trans Nucl Sci 1979; 26: 2780–2789.

    Google Scholar 

  41. Morozumi T, Nakajima M, Ogawa K, Yuta S. Attenuation correction method for single photon emission CT.Trans IEICE 1983; J-66-D 10: 1130–1136.

    Google Scholar 

  42. Morozumi T, Nakajima M, Ogawa K, Yuta S. Attenuation correction method using the ratio of two projections calculated without and with the attenuation for SPECT.Trans IEICE 1984; J-67-D 7: 800–806.

    Google Scholar 

  43. Bellini S, Piacentini M, Cafforio C, Rocca F. Compensation of tissue absorption in emission tomography.IEEE Trans Acoust Speech Signal Process 1979; 27: 213–218.

    Google Scholar 

  44. Tretiak OJ, Metz CE. The exponential Radon transform.SIAMJ Appl Math 1980; 39: 341–354.

    Google Scholar 

  45. Tanaka E. Quantitative image reconstruction with weighted backprojection for single photon emission tomography.J Compt Assist Tomogr 1983; 7: 692–700.

    Article  CAS  Google Scholar 

  46. Natterer F.The mathematics of computerized tomography. New York; Wiley, 1986.

    Google Scholar 

  47. Inouye T, Kose K, Hasegawa A. Image reconstruction algorithm for single photon emission computed tomography.Phys Med Biol 1989; 39: 299–304.

    Google Scholar 

  48. Metz CE, Pan X. A unified analysis of exact methods of inverting the 2D exponential Radon transform with implications for noise control in SPECT.IEEE Trans Med Imag 1995; 14: 643–658.

    CAS  Google Scholar 

  49. Liang Z. Compensation for attenuation, scatter and detector response in SPECT reconstruction via iterative FBP methods.Med Phys 1993; 20: 1097–1106.

    PubMed  CAS  Google Scholar 

  50. Budinger TF, Gullberg GT. Three-dimensional reconstruction in nuclear medicine emission imaging.IEEE Trans Nucl Sci 1974; 21: 2–20.

    Google Scholar 

  51. Gustafson DE, Berggren MJ, Singh M, Dewanjee MK. Computed transaxial imaging using single gamma emitters.Radiology 1978; 129: 187–194.

    PubMed  CAS  Google Scholar 

  52. Walters TE, Simon W, Chesler DA, Correia JA. Attenuation correction in gamma emission computed tomography.J Compt Assist Tomogr 1981; 5: 89–94.

    CAS  Google Scholar 

  53. Soussaline FP, Cao A, Le Coq G, Raynaud C, Kellershohn C. An analytical approach to single photon emission computed tomography with the attenuation effect.Eur J Nucl Med 1982; 7: 487–493.

    PubMed  CAS  Google Scholar 

  54. Axelsson B, Israelsson AL, Larsson SA. Studies of a technique for attenuation correction in single photon emission computed tomography.Phys Med Biol 1987; 32: 737–749.

    Google Scholar 

  55. Tsui BMW, Zhao XD, Frey EL, Gullberg GT. Comparison between ML-EM and WLS-CG algorithms for SPECT image reconstruction.IEEE Trans Nucl Sci 1991; 38: 1766–1772.

    Google Scholar 

  56. Tsui BMW, Terry JA, Gullberg GT. Evaluation of cardiac cone-beam single photon emission computed tomography using performance experiments and receiver operating characteristic analysis.Invest Radiol 1993; 28: 1101–1112.

    PubMed  CAS  Google Scholar 

  57. Ogawa K, Takagi Y, Kubo A, Hashimoto S, Sanmiya T, Okano Y, et al. An attenuation correction method for single photon emission computed tomography using gamma ray transmission CT.KAKU IGAKU (Jpn J Nucl Med) 1985; 22: 477–490.

    CAS  Google Scholar 

  58. Natterer F. Inversion of the attenuated Radon transform.Inverse Problem 2001; 17: 113–119.

    Google Scholar 

  59. Kunyansky LA. A new SPECT reconstruction algorithm based on the Novikov’s explicit inversion formula.Inverse Problem 2001; 17: 293–306.

    Google Scholar 

  60. Guillement JP, Jauberteau F, Kunyansky L, Novikov R, Trebossen R. On single-photon emission computed tomography imaging based on an exact formula for the nonuni-form attenuation correction.Inverse Problems 2002; 18: L11-L19.

    Google Scholar 

  61. Wen J, Li T, Liang Z. An analytical inversion of the nonuniformly attenuated Radon transform with variable focal-length fan-beam collimators.IEEE Trans Nucl Sci 2003; 50: 1641–1649.

    Google Scholar 

  62. Manglos SH, Young TM. Determination of the attenuation map from SPECT projection data alone.J Nucl Med 1993; 35: 193.

    Google Scholar 

  63. Moore SC, Kijewski MF, Mueller SP. A general, approach to non-uniform attenuation correction using emission data alone.J Nucl Med 1997; 38: 246.

    Google Scholar 

  64. Gullberg GT, Malko JA, Eisner RL. Boundary definition. InEmission computed tomography—Current trends. New York; The Society of Nuclear Medicine, 1983: 33–53.

    Google Scholar 

  65. Hosoba M, Wani H, Toyama H, Murata H, Tanaka E. Automated body contour detection in SPECT: effects on quantitative studies.J Nucl Med 1989; 27: 1184–1191.

    Google Scholar 

  66. Ben Younes R, Mas J, Bidet R. Fully automated detection algorithm: the preliminary step for scatter and attenuation compensation in SPECT.Eur J Nucl Med 1988; 14: 586–589.

    PubMed  CAS  Google Scholar 

  67. Macey DJ, DeNardo GL, DeNardo SJ. Comparison of three boundary detection methods for SPECT using Compton scattered photons.J Nucl Med 1988; 29: 203–207.

    PubMed  CAS  Google Scholar 

  68. Herbert TJ, Gopal SS, Murphy P. Fully automated optimization algorithm for determining the 3-D patient contour from photo-peak projection data in SPECT.IEEE Trans Med Imag 1995; 14: 122–131.

    Google Scholar 

  69. Manglos SH, Jaszczak RJ, Floyd CE, Hahn LJ, Greer KL, Coleman RE. Nonisotropic attenuation in SPECT: phantom tests of quantitative effects and compensation techniques.J Nucl Med 1987; 28: 1584–1591.

    PubMed  CAS  Google Scholar 

  70. Ogawa K, Kubo A, Hashimoto S, Morozumi T, Nakajima M, Yuta S, et al. An attenuation correction of SPECT image transmission data acquired with dual head gamma camera system.Med Imag Tech 1985; 3s: 103–104.

    Google Scholar 

  71. Malko JA, Van Hertuum RL, Gullberg GT, Kowalsky WP. SPECT liver imaging using an iterative attenuation algorithm and an external flood source.J Nucl Med 1986; 27: 701–705.

    PubMed  CAS  Google Scholar 

  72. Bailey DL, Hutton BF, Walker PJ. Improved SPECT using simultaneous emission and transmission Tomography.J Nucl Med 1987; 28: 844–851.

    PubMed  CAS  Google Scholar 

  73. Tsui BMW, Gullberg GT, Edgerton ER, Ballard JG, Perry JR, McCartney WH, et al. Correction of non-uniform attenuation in cardiac SPECT imaging.J Nucl Med 1989; 30: 497–507.

    PubMed  CAS  Google Scholar 

  74. Ljungberg M. Development and evaluation of attenuation and scatter correction techniques for SPECT using the Monte Carlo method. PhD Thesis, Lund University, Sweden, 1990.

    Google Scholar 

  75. Manglos SH, Bassano DA, Duxbury CE, Capone RB. Attenuation maps for SPECT determined using cone beam transmission computed tomography.IEEE Trans Nucl Sci 1990; 37: 600–608.

    Google Scholar 

  76. Manglos SH, Bassano DA, Thomas FD, Grossman ZD. Imaging of human torso using cone beam transmission CT implemented on a rotating gamma camera.J Nucl Med 1992; 33: 150.

    PubMed  CAS  Google Scholar 

  77. Cao ZJ, Tsui BMW. Performance characteristics of transmission imaging using a uniform sheet source with parallel hole collimation.Med Phys 1992; 19: 1205–1212.

    PubMed  CAS  Google Scholar 

  78. Celler A, Sitek A, Stoub E, Hawman P, Harrop R, Lyster D. Multiple line source array for SPECT transmission scans: simulation, phantom and patient studies.J Nucl Med 1998; 39: 2183–2189.

    PubMed  CAS  Google Scholar 

  79. Almquist H, Palmer J, Ljungberg M, Wollmer P, Jonson B, Strand S-E. Quantitative SPECT by correction of the projection set using transmission data: evaluation of a method.Eur J Nucl Med 1990; 16: 587–594.

    PubMed  CAS  Google Scholar 

  80. Greer KL, Harris CC, Jaszczak RJ, Coleman RE, Hedlund LW, Floyd CE, et al. Transmission computed tomography data acquisition with a SPECT system.J Nucl Med Tech 1987; 15: 53–56.

    Google Scholar 

  81. Tung C-H, Gullberg GT, Zeng GL, Christian PE, Datz FL, Morgan HT. Non-uniform attenuation correction using simultaneous transmission and emission converging tomography.IEEE Trans Nucl Sci 1992; 39: 1134–1143.

    CAS  Google Scholar 

  82. Kalki K, Blankespoor SC, Brown JK, Hasegawa BH, Dae MW, Stillson C. Myocardial perfusion imaging with a combined X-ray CT and SPECT system.J Nucl Med 1978; 38: 1530–1540.

    Google Scholar 

  83. Fleming JS. A technique for using CT images in attenuation correction and quantification in SPECT.Nucl Med Commun 1989; 10: 83–97.

    PubMed  CAS  Google Scholar 

  84. Rowell NP, Glaholm J, Flower MA, McCready VR. Anatomically derived attenuation coefficients for use in quantitative single photon emission tomography studies of the thorax.Eur J Nucl Med 1992; 19: 36–40.

    PubMed  CAS  Google Scholar 

  85. Takahashi Y, Murase K, Higashino H, Mochizuki T, Motomura N. Attenuation correction of myocardial SPECT images with X-ray CT: Effect of registration errors between X-ray CT and SPECT.Ann Nucl Med 2002; 16: 431–435.

    PubMed  Google Scholar 

  86. Kashiwagi T, Yutani K, Fukuchi M, Naruse H, Iwasaki T, Yokozuka K, et al. Correction of nonuniform attenuation and image fusion in SPECT imaging by means of separate X-ray CT.Ann Nucl Med 2002; 16: 255–261.

    PubMed  Google Scholar 

  87. Floyd CE, Jaszczak RJ, Harris CC, Coleman RE. Energy and spatial distribution of multiple order Compton scatter in SPECT: A Monte Carlo simulation.Phys Med Biol 1984; 29: 1217–1230.

    PubMed  CAS  Google Scholar 

  88. Floyd CE, Jaszczak RJ, Coleman RE. Scatter detection in SPECT imaging: dependence on source depth, energy, and energy window.Phys Med Biol 1988; 33: 1075–1081.

    PubMed  Google Scholar 

  89. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. Estimation of scatter components in SPECT planar image using a Monte Carlo method.KAKU IGAKU (Jpn J Nucl Med) 1990; 27: 467–476.

    CAS  Google Scholar 

  90. Maeda S, Ogawa K. Quantitative assessment of scattered photons considering skull bone in brain SPECT.KAKU IGAKU (Jpn J Nucl Med) 1994; 31: 431–439.

    CAS  Google Scholar 

  91. Axelsson B, Msaki B, Israelsson A. Subtraction of Compton-scattered photons in single-photon emission computerized tomography.J Nucl Med 1984; 25: 490–494.

    PubMed  CAS  Google Scholar 

  92. Koral KF, Swailem FM, Buchbinder S, Clinthone NH, Rogers WL, Tsui BMW. SPECT dual-energy-window Compton correction: scatter multiplier required for quantification.J Nucl Med 1990; 31: 90–98.

    PubMed  CAS  Google Scholar 

  93. Jaszczak RJ, Greer KL, Floyd CE, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons.J Nucl Med 1984; 25: 893–900.

    PubMed  CAS  Google Scholar 

  94. Lowry CA, Cooper MJ. The problem of Compton scattering in emission tomography: a measurement of its spatial distribution.Phys Med Biol 1987; 32: 1187–1191.

    PubMed  CAS  Google Scholar 

  95. King MA, Hademenos GJ, Glick SJ. A dual-photopeak window method for scatter correction.J Nucl Med 1992; 33: 605–612,

    PubMed  CAS  Google Scholar 

  96. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT.IEEE Trans Med Imag 1991; 10: 408–412.

    CAS  Google Scholar 

  97. Ogawa K, Ichihara T, Kubo A. Accurate scatter correction in single photon emission CT.Ann Nucl Med Sci 1994; 7: 145–150.

    Google Scholar 

  98. Ichihara T, Ogawa K, Motomura N, Hasegawa H, Hashimoto J, Kubo A. Compton-scatter compensation using the triple energy window method for single and dual isotope SPECT.J Nucl Med 1993; 34: 2216–2221.

    PubMed  CAS  Google Scholar 

  99. Ogawa K, Nishizaki N. Accurate scatter compensation using neural networks in radionuclide imaging.IEEE Trans Nucl Sci 1993; 40: 1020–1024.

    CAS  Google Scholar 

  100. Gagnon D, Todd-Pokropek AE, Arsenault A, Dupras G. Introduction to holospectral imaging in nuclear medicine for scatter subtraction.IEEE Trans Med Imag 1989; 8: 245–250,

    CAS  Google Scholar 

  101. Hamill JJ, DeVito RP. Scatter reduction with energy- weighted acquisition.IEEE Trans Nucl Sci 1989; 36: 1334–1339.

    CAS  Google Scholar 

  102. Koral KF, Wang X, Rogers WL, Clinthone NH, Wang X. SPECT Compton-scattering correction by analysis of energy spectra.J Nucl Med 1988; 29: 195–202.

    PubMed  CAS  Google Scholar 

  103. Floyd CE, Jaszczak RJ, Greer KL, Coleman RE. Inverse Monte Carlo as a unified reconstruction algorithm for ECT.J Nucl Med 1986; 27: 1577–1585.

    PubMed  Google Scholar 

  104. Meikle SR, Hutton BF, Bailey DL. A transmission dependent method for scatter correction in SPECT.J Nucl Med 1994; 35: 360–367.

    PubMed  CAS  Google Scholar 

  105. Narita Y, Eberl S, Iida H, Hutton BF, Braun M, Nakamura T, et al. Monte Carlo and experimental evaluation of accuracy and noise properties of two scatter correction methods for SPECT.Phys Med Biol 1996; 41: 2481–2496.

    PubMed  CAS  Google Scholar 

  106. Kadrmas DJ, Frey EC, Karimi SS, Tsui BMW. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction.Phys Med Biol 1998; 43: 857–874.

    PubMed  CAS  Google Scholar 

  107. Tsui BMW, Frey EC, LaCroix KJ, Lalush DS, McCartney WH, King MA, et al. Quantitative Myocardial Perfusion SPECT.J Nucl Cardiol 1998; 5: 507–522.

    PubMed  CAS  Google Scholar 

  108. Motomura N, Ichihara T, Hasegawa H, Ogawa K, Hashimoto J, Kubo A. Development of a lead x-ray compensation method in simultaneous Tl-201 SPECT & Tc-99m TCT using a flood source.IEEE Trans Nucl Sci 1997; 44: 2459–2464.

    CAS  Google Scholar 

  109. Wang WT, Frey EC, Tsui BMW, Tocharoenchai C, Baird WH. Parameterization of Pb X-ray contamination in simultaneous Tl-201 and Tc-99m dual-isotope imaging.IEEE Trans Nucl Sci 2002; 49: 680–692.

    CAS  Google Scholar 

  110. Ogawa K, Simulation study of triple-energy-window scatter correction in combined Tl-201, Tc-99m SPECT.Ann Nucl Med 1994; 8: 277–281.

    PubMed  Google Scholar 

  111. Matsunaga A, Ogawa K. Scatter correction in multi-radioclide data acquisition by means of a neural network. InIEEE Conf Rec of Med Imag Conf, vol. 2, 1999: 948–952.

  112. El Fakhri G, Maksud P, Habert MO, Todd-Pokropek A, Aurengo A. A new correction method for cross-talk using artificial neural network: validation in simultaneous technetium and iodine cerebral imaging. InIEEE Conf Rec of Med Imag Conf, vol. 2,1999: 1000–1004.

  113. El Fakhri G, Moore SC, Maksud P, Aurengo A, Kijewski MF. Absolute activity quantitation in simultaneous123I/99mTc brain SPECT.J Nucl Med 2001; 42: 300–308.

    PubMed  CAS  Google Scholar 

  114. Moore SC, Kouris K, Cullum I. Collimator design for single photon emission tomography.Eur J Nucl Med 1992; 19: 138–150.

    PubMed  CAS  Google Scholar 

  115. Simmons GH, ed.The Scintillation Camera. The Society of Nuclear Medicine, 1988: 1–78.

  116. King MA, Glick SJ, Penney BC, Schwinger RB. Interactive visual optimization of SPECT pre-reconstruction filtering.J Nucl Med 1987; 28: 1192–1198.

    PubMed  CAS  Google Scholar 

  117. Ogawa K, Paek S, Nakajima M, Yuta S, Kubo A, Hashimoto S. Correction of collimator aperture using shift-variant deconvolution filter in gamma camera CT. InProceedings of SPIE Medical Imaging II: Image Processing, vol. 914, 1988: 699–706.

  118. Lewitt RM, Edholm PR, Xia W. Fourier method for correction of depth-dependent collimator blurring. InProceedings SPIE Med Imag III: Image Processing, vol. 1092, 1989: 232–243.

  119. Xia W, Lewitt RM, Edholm PR. Fourier correction for spatially variant collimator blurring in SPECT.IEEE Trans Med Imag 1995; 14: 100–115.

    CAS  Google Scholar 

  120. Frey EC, Tsui BMW, Gullberg GT. Improved estimation of the detector response function for converging beam collimators.Phys Med Biol 1998; 43: 941–950.

    PubMed  CAS  Google Scholar 

  121. Lalush DS, Tsui BMW. Mean-Variance Analysis of block-iterative reconstruction algorithms modeling 3D detector response in SPECT.IEEE Trans Nucl Sci 1998; 45: 1280–1287.

    Google Scholar 

  122. Yokoi T, Shinohara H, Onishi H. Performance evaluation of OSEM reconstruction algorithm incorporating three-dimensional distance-dependent resolution compensation for brain SPECT: A simulation study.Ann Nucl Med 2002; 16: 11–18.

    Article  PubMed  Google Scholar 

  123. Katu H, Ogawa K. An iterative correction method of image blurring by collimator aperture in single photon emission CT.Trans IEICE 1993; J76-D-II 2: 199–205.

    Google Scholar 

  124. Ogawa K, Katsu H. Iterative correction method for shift-variant blurring caused by collimator aperture in SPECT.Ann Nucl Med 1996; 10: 33–40.

    PubMed  CAS  Google Scholar 

  125. Novikov RG. An inversion formula for the attenuated X-ray transformation.Ark Mat 2002; 40: 145–167.

    Google Scholar 

  126. Ishikawa A, Ogawa K. Implementation and evaluation of analytical attenuation correction for non-uniform attenuator.Med Imag Tech 2004; 22: 92–98.

    Google Scholar 

  127. Ishikawa A, Ogawa K. Reduction of streak artifacts in an analytical attenuation correction method for single photon emission CT. InProceedings of IASTED ASM 2004 (in press).

  128. Kojima A, Tsuji A, Takaki Y, Tomiguchi S, Hara M, Matsumoto M, et al. Correction of scattered photons in Tc-99m imaging by means of a photopeak dual-energy window acquisition.Ann Nucl Med 1992; 6: 153–158.

    Article  PubMed  CAS  Google Scholar 

  129. Ishii M, Ogawa K, Nakahara T, Hashimoto J, Kubo A. Quantification of I-123 and Tc-99m in dual-isotope SPECT with an artificial neural network.Med Imag Tech 2004; 22: 155–163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Ogawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, K. Image distortion and correction in single photon emission CT. Ann Nucl Med 18, 171–185 (2004). https://doi.org/10.1007/BF02984998

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02984998

Key words

Navigation