Skip to main content
Log in

Apoptotic Signaling in Multiple Myeloma: Therapeutic Implications

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Fifteen thousand new cases of multiple myeloma (MM) will occur in the United States in 2003, and the disease remains incurable. Diverse classes of chemotherapeutic agents induce cell death or apoptosis in MM cells; however, prolonged drug exposures ultimately induce chemoresistance.The mechanisms whereby MM cells resist drugs include alterations in intracellular signaling as well as adherence and cytokines in the bone marrow (BM) microenvironment. Novel agents that target the MM cell in its BM microenvironment are needed to both enhance anti-MM activity and prevent development of drug resistance. Delineation of cellular growth and apoptotic signaling pathways in MM cells may identify molecules that serve as novel therapeutic targets on the basis of interruption of MM cell growth or triggering of MM cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson KC. Moving disease biology from the lab to the clinic.Cancer. 2003;97(suppl 3):796–801.

    Article  PubMed  Google Scholar 

  2. Kawano MM, Hirano T, Matsuda T, et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myeloma.Nature. 1988;332:83–85.

    Article  CAS  PubMed  Google Scholar 

  3. Chauhan D, Anderson KC. Apoptosis in multiple myeloma: therapeutic implications.Apoptosis. 2001;6:47–55.

    Article  CAS  PubMed  Google Scholar 

  4. Hideshima T, Anderson KC. Molecular mechanisms of novel therapeutic approaches for multiple myeloma.Nat Rev Cancer. 2002;2:927–937.

    Article  CAS  PubMed  Google Scholar 

  5. Kawano MM, Ishikawa H,Tsuyama N, et al. Growth mechanism of human myeloma cells by interleukin-6.Int J Hematol. 2002;76(suppl 1):329–333.

    Article  PubMed  Google Scholar 

  6. Willie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis.Int Rev Cytol. 1980;68:251–306.

    Article  Google Scholar 

  7. Chinnaiyan AM, Dixit VM. The cell-death machine.Curr Biol. 1996;6:555–562.

    Article  CAS  PubMed  Google Scholar 

  8. Thornberry NA, Lazebnik Y. Caspases: enemies within.Science. 1998;281:1312–1316.

    Article  CAS  PubMed  Google Scholar 

  9. Oberhammer FA, Hochegger K, Froschl G, Tiefenbacher R, Pavelka M. Chromatin condensation during apoptosis is accompanied by degradation of lamin A+B, without enhanced activation of cdc2 kinase.J Cell Biol. 1994;126:827–837.

    Article  CAS  PubMed  Google Scholar 

  10. Enari M, Sakahira H,Yokoyama H, Okawa K, Iwanatsu A, Natata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD.Nature. 1998;391:43–50.

    Article  CAS  PubMed  Google Scholar 

  11. Sahara S, Aoto M, Eguchi Y, Imamoto N, Yoneda Y, Tsujimoto Y. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation.Nature. 1999;401:168–173.

    Article  CAS  PubMed  Google Scholar 

  12. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspasemediated activation of ROCK I.Nat Cell Biol. 2001;3:339–345.

    Article  CAS  PubMed  Google Scholar 

  13. Nguyen M, Millar DG, Yong VW, Korsmeyer SJ, Shore GC. Targeting of Bcl-2 to the mitochondrial outer membrane by a COOHterminal signal anchor sequence.J Biol Chem. 1993;268:25265–25268.

    PubMed  CAS  Google Scholar 

  14. Newmeyer DD, Farschon DM, Reed JC. Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria.Cell. 1994;79:353–364.

    Article  CAS  PubMed  Google Scholar 

  15. Zamzami N, Marchetti P, Castedo M, et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death.J Exp Med. 1995;182:367–377.

    Article  CAS  PubMed  Google Scholar 

  16. Srinivasula SM, Datta P, Fan XJ, Fernandes-Alnemri T, Huang Z, Alnemri ES. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway.J Biol Chem. 2000;275:36152–36157.

    Article  CAS  PubMed  Google Scholar 

  17. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition.Cell. 2000;102:33–42.

    Article  CAS  PubMed  Google Scholar 

  18. Chauhan D, Pandey P, Ogata A, et al. Cytochrome-c dependent and independent induction of apoptosis in multiple myeloma cells.J Biol Chem. 1997;272:29995–29997.

    Article  CAS  PubMed  Google Scholar 

  19. Kroemer G, Reed JC. Mitochondrial control of cell death.Nat Med. 2000;6:513–519.

    Article  CAS  PubMed  Google Scholar 

  20. Kharbanda S, Saxena S, Yoshida K, et al. Translocation of SAPK/ JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage.J Biol Chem. 2000;275:322–327.

    Article  CAS  PubMed  Google Scholar 

  21. Chauhan D, Li G, Hideshima T, et al. JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells.J Biol Chem. 2003;278:17593–17596.

    Article  CAS  PubMed  Google Scholar 

  22. Chauhan D, Pandey P, Ogata A, et al. Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism.Oncogene. 1997;15:837–843.

    Article  CAS  PubMed  Google Scholar 

  23. Chauhan D, Hideshima T, Rosen S, Reed JC, Kharbanda S, Anderson KC. Apaf-1/cytochrome c-independent and Smac-dependent induction of apoptosis in multiple myeloma (MM) cells.J Biol Chem. 2001;276:24453–24456.

    Article  CAS  PubMed  Google Scholar 

  24. Tournier C, Hess P, Yang DD, et al. Requirement of JNK for stressinduced activation of the cytochrome c-mediated death pathway.Science. 2000;288:870–874.

    Article  CAS  PubMed  Google Scholar 

  25. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis.Cell. 1993;75:241–251.

    Article  CAS  PubMed  Google Scholar 

  26. Chauhan D, Guilan L, Sattler M, et al. Superoxide-dependent and independent mitochondrial signaling during apoptosis in multiple myeloma (MM) cells.Oncogene. In press.

  27. Bossy-Wetzel E, Green DR. Apoptosis: checkpoint at the mitochondrial frontier.Mutat Res. 1999;434:243–251.

    Article  CAS  PubMed  Google Scholar 

  28. Distelhorst CW. Recent insights into the mechanism of glucocorticosteroid-induced apoptosis.Cell Death Differ. 2002;9:6–19.

    Article  CAS  PubMed  Google Scholar 

  29. Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis.Nat Cell Biol. 2000;2:318–325.

    Article  CAS  PubMed  Google Scholar 

  30. Dalton WS. Targeting the mitochondria: an exciting new approach to myeloma therapy [commentary].Clin Cancer Res. 2002;8:3643–3645.

    PubMed  Google Scholar 

  31. Guo F, Nimmanapalli R, Paranawithana S, et al. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis.Blood. 2002;99:3419–3426.

    Article  CAS  PubMed  Google Scholar 

  32. Ng CP, Bonavida B. X-linked inhibitor of apoptosis (XIAP) blocks Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of prostate cancer cells in the presence of mitochondrial activation: sensitization by overexpression of second mitochondria-derived activator of caspase/direct IAP-binding protein with low pl (Smac/DIABLO).Mol Cancer Ther. 2002;1:1051–1058.

    PubMed  CAS  Google Scholar 

  33. Grad JM, Bahlis NJ, Reis I, Oshiro MM, Dalton WS, Boise LH. Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells.Blood. 2001;98:805–813.

    Article  CAS  PubMed  Google Scholar 

  34. Dvorakova K, Waltmire CN, Payne CM, Tome ME, Briehl MM, Dorr RT. Induction of mitochondrial changes in myeloma cells by imexon.Blood. 2001;97:3544–3551.

    Article  CAS  PubMed  Google Scholar 

  35. Ishikawa H, Tsuyama N, Abroun S, et al. Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6.Blood. 2002;99:2172–2178.

    Article  CAS  PubMed  Google Scholar 

  36. Alexanian R, Barlogie B, Dixon D. High dose glucocorticoid treatment of resistant myeloma.Ann Intern Med. 1986;105:8–11.

    Article  CAS  PubMed  Google Scholar 

  37. Chauhan D, Pandey P, Hideshima T, et al. SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells.J Biol Chem. 2000;275:27845–27850.

    PubMed  CAS  Google Scholar 

  38. Chatterjee M, Honemann D, Lentzsch S, et al. In the presence of bone marrow stromal cells human multiple myeloma cells become independent of the IL-6/gp130/STAT3 pathway.Blood. 2002;100:3311–3318.

    Article  CAS  PubMed  Google Scholar 

  39. Le Gouill S, Pellat-Deceunynck C, Harousseau JL, et al. Farnesyl transferase inhibitor R115777 induces apoptosis of human myeloma cells.Leukemia. 2002;16:1664–1667.

    Article  CAS  Google Scholar 

  40. Bolick SC, Landowski TH, Boulware D, et al. The farnesyl transferase inhibitor, FTI-277, inhibits growth and induces apoptosis in drug-resistant myeloma tumor cells.Leukemia. 2003;17:451–457.

    Article  CAS  PubMed  Google Scholar 

  41. Uchiyama H, Anderson KC. Cellular adhesion molecules.Transfus Med Rev. 1994;8:84–95.

    Article  CAS  PubMed  Google Scholar 

  42. Raje N, Anderson KC. Thalidomide: a revival story.N Engl J Med. 1999;341:1606–1609.

    Article  CAS  PubMed  Google Scholar 

  43. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines.Blood. 1999;93:1658–1667.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D, Anderson KC. Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates IL-6 secretion.Blood. 1993;82:3712–3720.

    PubMed  CAS  Google Scholar 

  45. Chauhan D, Uchiyama H, Akbarali Y, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B.Blood. 1996;87:1104–1112.

    PubMed  CAS  Google Scholar 

  46. Hideshima T, Chauhan D, Richardson P, et al. NF-kappa B as a therapeutic target in multiple myeloma.J Biol Chem. 2002;277:16639–16647.

    Article  CAS  PubMed  Google Scholar 

  47. Bharti AC, Donato N, Singh S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and Ikappa Balpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis.Blood. 2003;101:1053–1062.

    Article  CAS  PubMed  Google Scholar 

  48. Akiyama M, Hideshima T, Hayashi T, et al. Nuclear factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein.Cancer Res. 2003;63:18–21.

    PubMed  CAS  Google Scholar 

  49. Mitsiades N, Mitsiades CS, Poulaki V, et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications.Blood. 2002;99:4079–4086.

    Article  CAS  PubMed  Google Scholar 

  50. Kawano MM, Huang N, Tanaka H, et al. Homotypic cell aggregations of human myeloma cells with ICAM-1 and LFA-1 molecules.Br J Haematol. 1991;79:583–588.

    Article  CAS  PubMed  Google Scholar 

  51. Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma.Oncogene. 2001;20:5991–6000.

    Article  CAS  PubMed  Google Scholar 

  52. Qiang YW, Kopantzev E, Rudikoff S. Insulinlike growth factor-I signaling in multiple myeloma: downstream elements, functional correlates, and pathway cross-talk.Blood. 2002;99:4138–4146.

    Article  CAS  PubMed  Google Scholar 

  53. Mitsiades CS, Mitsiades N, Poulaki V, et al. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications.Oncogene. 2002;21:5673–5683.

    Article  CAS  PubMed  Google Scholar 

  54. Tassone P, Forciniti S, Galea E, et al. Synergistic induction of growth arrest and apoptosis of human myeloma cells by the IL-6 super-antagonist Sant7 and dexamethasone.Cell Death Differ. 2000;7:327–328.

    Article  CAS  PubMed  Google Scholar 

  55. Hirata T, Shimazaki C, Sumikuma T, et al. Humanized anti-interleukin-6 receptor monoclonal antibody induced apoptosis of fresh and cloned human myeloma cells in vitro.Leuk Res. 2003;27:343–349.

    Article  CAS  PubMed  Google Scholar 

  56. Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells.Proc Natl Acad Sci U S A. 2002;99:14374–14379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mitsiades N, Mitsiades CS, Richardson PG, et al. Molecular sequelae of histone deacetylase inhibition in human malignant B cells.Blood. 2003;101:4055–4062.

    Article  CAS  PubMed  Google Scholar 

  58. van de Donk NW, Kamphuis MM, van Dijk M, Borst HP, Bloem AC, Lokhorst HM. Chemosensitization of myeloma plasma cells by an antisense-mediated downregulation of Bcl-2 protein.Leukemia. 2003;17:211–219.

    Article  CAS  PubMed  Google Scholar 

  59. Derenne S, Monia B, Dean NM, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells.Blood. 2002;100:194–199.

    Article  CAS  PubMed  Google Scholar 

  60. Pruneri G, Carboni N, Baldini L, et al. Cell cycle regulators in multiple myeloma: prognostic implications of p53 nuclear accumulation.Hum Pathol. 2003;34:41–47.

    Article  CAS  PubMed  Google Scholar 

  61. Semenov I,Akyuz C, Roginskaya V, Chauhan D, Corey SJ. Growth inhibition and apoptosis of myeloma cells by the CDK inhibitor flavopiridol.Leuk Res. 2002;26:271–280.

    Article  CAS  PubMed  Google Scholar 

  62. Otsuki T, Hata H, Harada N, et al. Cellular biological differences between human myeloma cell lines KMS-12-PE and KMS-12-BM established from a single patient.Int J Hematol. 2000;72:216–222.

    PubMed  CAS  Google Scholar 

  63. Urashima M, Ogata A, Chauhan D, et al. Interleukin-6 promotes multiple myeloma cell growth via phosphorylation of retinoblastoma protein.Blood. 1996;88:2219–2227.

    PubMed  CAS  Google Scholar 

  64. Chauhan D, Hideshima T, Treon S, et al. Functional interaction between retinoblastoma protein and stress-activated protein kinase in multiple myeloma cells.Cancer Res. 1999;59:1192–1195.

    PubMed  CAS  Google Scholar 

  65. Dai Y, Landowski TH, Rosen ST, Dent P, Grant S. Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and -resistant myeloma cells through an IL-6-independent mechanism.Blood. 2002;100:3333–3343.

    Article  CAS  PubMed  Google Scholar 

  66. Alas S, Bonavida B. Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis.Clin Cancer Res. 2003;9:316–326.

    PubMed  CAS  Google Scholar 

  67. Vanderkerken K, De Leenheer E, Shipman C, et al. Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma.Cancer Res. 2003;63:287–289.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth C. Anderson.

About this article

Cite this article

Chauhan, D., Hideshima, T. & Anderson, K.C. Apoptotic Signaling in Multiple Myeloma: Therapeutic Implications. Int J Hematol 78, 114–120 (2003). https://doi.org/10.1007/BF02983378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02983378

Key words

Navigation