Skip to main content
Log in

Interleukin-6—Induced Proliferation of Human Myeloma Cells Associated with CD45 Molecules

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Cytokines exert multiple biological functions through binding to their specific receptors that triggers activation of intracellular signaling cascades. The cytokine-mediated signals may produce variable and even opposing effects on different cell types, depending on cellular context, which also are dictated by the differentiation stage of the cell. Multiple myeloma is a monoclonal proliferative disorder of human plasma cells. Despite their clonal origin, myeloma cells appear to include mixed subpopulations in accordance with expression of their surface antigens, such as CD45, CD49e, and MPC-1. Although interleukin-6 (IL-6) is widely accepted as the most relevant growth factor for myeloma cells in vitro and in vivo, only a few subpopulations of tumor cells, such as CD45+MPC-1-CD49e- immature cells, proliferate in response to IL-6.We recently showed that IL-6 efficiently activated both signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase 1/2 (ERK1/2) in CD45- myeloma cell lines, although CD45- cells failed to proliferate in response to IL-6. In contrast, src family protein-tyrosine kinases (PTKs), the most important substrates for CD45 protein-tyrosine phosphatase (PTP) are found activated independently of STAT3 and ERK1/2 activation in CD45+ but not in CD45- myeloma cell lines.Therefore activation of both STAT3 and ERK1/2 is not sufficient for IL-6—induced proliferation of myeloma cells, which requires the src family kinase activation associated with CD45 expression. We propose a mechanism for IL-6—induced cell proliferation that is strictly dependent on the cellular context in myelomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li L, Dixon JE. Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases.Semin Immunol. 2000;12:75–84.

    Article  CAS  PubMed  Google Scholar 

  2. Kawano M, Hirano T, Matsuda T, et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas.Nature. 1988;332:83–85.

    Article  CAS  PubMed  Google Scholar 

  3. Kawano MM, Huang N, Harada H, et al. Identification of immature and mature myeloma cells in the bone marrow of human myeloma.Blood. 1993;82:564–570.

    CAS  PubMed  Google Scholar 

  4. Fujii R, Ishikawa H, Mahmoud MS, Asaoku H, Kawano MM. MPC-1-CD49e- immature myeloma cells include CD45+ subpopulations that can proliferate in response to IL-6 in human myelomas.Br J Haematol. 1999;105:131–140.

    Article  CAS  PubMed  Google Scholar 

  5. Ishikawa H, Tsuyama N, Abroun S, et al. Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6.Blood. 2002;99:2172–2178.

    Article  CAS  PubMed  Google Scholar 

  6. Huang N, Kawano MM, Harada H, et al. Heterogeneous expression of a novel MPC-1 antigen on myeloma cells: possible involvement of MPC-1 antigen in the adhesion of mature myeloma cells to bone marrow stromal cells.Blood. 1993;82:3721–3729.

    CAS  PubMed  Google Scholar 

  7. Harada H, Kawano MM, Huang N, et al. Phenotypic difference of normal plasma cells from mature myeloma cells.Blood. 1993;81:2658–2663.

    CAS  PubMed  Google Scholar 

  8. Harada Y, Kawano MM, Huang N, et al. Identification of early plasma cells in peripheral blood and their clinical significance.Br J Haematol. 1996;92:184–191.

    Article  CAS  PubMed  Google Scholar 

  9. Mahmoud MS, Huang N, Nobuyoshi M, Lisukov IA, Tanaka H, Kawano MM. Altered expression of Pax-5 gene in human myeloma cells.Blood. 1996;87:4311–4315.

    CAS  PubMed  Google Scholar 

  10. Mahmoud MS, Fujii R, Ishikawa H, Kawano MM. Enforced CD19 expression leads to growth inhibition and reduced tumorigenicity.Blood. 1999;94:3551–3558.

    CAS  PubMed  Google Scholar 

  11. Georgii-Hemming P, Wiklund HJ, Ljunggren O, Nilsson K. Insulinlike growth factor I is a growth and survival factor in human multiple myeloma cell lines.Blood. 1996;88:2250–2258.

    CAS  PubMed  Google Scholar 

  12. Lu ZY, Zhang XG, Rodriguez C, et al. Interleukin-10 is a proliferation factor but not a differentiation factor for human myeloma cells.Blood. 1995;85:2521–2527.

    CAS  PubMed  Google Scholar 

  13. Brenne A-T, Baade Ro T, Waage A, Sundan A, Borset M, Hjorth-Hansen H. Interleukin-21 is a growth and survival factor for human myeloma cells.Blood. 2002;99:3756–3762.

    Article  CAS  PubMed  Google Scholar 

  14. Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine.Adv Immunol. 1993;54:1–78.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang XG, Bataille R, Widjenes J, Klein B. Interleukin-6 dependence of advanced malignant plasma cell dyscrasia.Cancer. 1992;69:1373–1376.

    Article  CAS  PubMed  Google Scholar 

  16. Suematsu S, Matsusaka T, Matsuda T, et al. Generation of plasmacytomas with the chromosomal translocation t(12;15) in interleukin 6 transgenic mice.Proc Natl Acad Sci U S A. 1992;89:232–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lattanzio G, Libert C, Aquilina M, et al. Defective development of pristane-oil—induced plasmacytomas in interleukin-6-deficient BALB/c mice.Am J Pathol. 1997;151:689–696.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hilbert DM, Kopf M, Mock BA, Kohler G, Rudikoff S. Interleukin 6 is essential for in vivo development of B lineage neoplasms.J Exp Med. 1995;182:243–248.

    Article  CAS  PubMed  Google Scholar 

  19. Kawano MM, Mihara K, Huang N, Tsujimoto T, Kuramoto A. Differentiation of early plasma cells on bone marrow stromal cells requires interleukin-6 for escaping from apoptosis.Blood. 1995;85:487–494.

    CAS  PubMed  Google Scholar 

  20. Zhang XG, Gu JJ, Lu ZY, et al. Ciliary neutropic factor, interleukin 11, leukemia inhibitory factor, and oncostatin M are growth factors for human myeloma cell lines using the interleukin 6 signal transducer gp130.J Exp Med. 1994;179:1337–1342.

    Article  CAS  PubMed  Google Scholar 

  21. Klein B, Zhang X-G, Content J, et al. Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6.Blood. 1989;73:517–526.

    CAS  PubMed  Google Scholar 

  22. Rettig MB, Ma HJ, Vesico RA, et al. Kaposi’s sarcoma—associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients.Science. 1997;276:1851–1854.

    Article  CAS  PubMed  Google Scholar 

  23. Chow D, He X, Snow AL, Rose-John S, Garcia KC. Structure of an extracellular gp130 cytokine receptor signaling complex.Science. 2001;291:2150–2155.

    Article  CAS  PubMed  Google Scholar 

  24. Mullberg J, Dittrich E, Graeve L, et al. Differential shedding of the two subunits of the interleukin-6 receptor.FEBS Lett. 1992;332:174–178.

    Article  Google Scholar 

  25. Lust JA, Donovan KA, Kline MP, Greipp PR, Kyle RA, Maihle NJ. Isolation of an mRNA encoding a soluble form of the human interleukin-6 receptor.Cytokine. 1992;4:96–100.

    Article  CAS  PubMed  Google Scholar 

  26. Kishimoto T, Taga T, Akira S. Cytokine signal transduction.Cell. 1994;76:253–262.

    Article  CAS  PubMed  Google Scholar 

  27. Taniguchi T. Cytokine signal through nonreceptor protein tyrosine kinases.Science. 1995;268:251–255.

    Article  CAS  PubMed  Google Scholar 

  28. Ihle JN. STATs: signal transducers and activators of transcription.Cell. 1996;84:331–334.

    Article  CAS  PubMed  Google Scholar 

  29. Endo TA, Masuhara M,Yokouchi M, et al. A new protein containing an SH2 domain that inhibits JAK kinases.Nature. 1997;387:921–924.

    Article  CAS  PubMed  Google Scholar 

  30. Naka T, Narazaki M, Hirata M, et al. Structure and function of a new STAT-induced STAT inhibitor.Nature. 1997;387:924–929.

    Article  CAS  PubMed  Google Scholar 

  31. Yoshimura A, Ohkubo T, Kiguchi T, et al. A novel cytokine inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors.EMBO J. 1995;14:2816–2826.

    Article  CAS  Google Scholar 

  32. Hirano T, Matsuda T, Nakajima K. Signal transduction through gp130 that is shared among the receptors for the interleukin 6 related cytokine subfamily.Stem Cells. 1994;12:262–277.

    Article  CAS  PubMed  Google Scholar 

  33. Ihle JN, Witthuhn BA, Quelle FW, et al. Signaling by the cytokine receptor superfamily: JAKs and STATs.Trends Biochem Sci. 1994;19:222–227.

    Article  CAS  PubMed  Google Scholar 

  34. Wen Z, Zhong Z, Darnell Jr JE. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation.Cell. 1995;82:241–250.

    Article  CAS  PubMed  Google Scholar 

  35. Fukada T, Hibi M, Yamanaka Y, et al. Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis.Immunity. 1996;5:449–460.

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi-Tezuka M, Yoshida Y, Fukada T, et al. Gab1 acts as an adapter molecule linking the cytokine receptor gp130 to ERK mitogen-activated protein kinase.Mol Cell Biol. 1998;18:4109–4117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dorsch M, Fan PD, Danial NN, Rothman PB, Goff SP. The thrombopoietin receptor can mediate proliferation without activation of the Jak-STAT pathway.J Exp Med. 1997;186:1947–1955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chaturvedi P, Reddy MVR, Reddy EP. Src kinases and not JAKs activate STATs during IL-3 induced myeloid cell proliferation.Oncogene. 1998;16:1749–1758.

    Article  CAS  PubMed  Google Scholar 

  39. Corey SJ, Dombrosky-Ferlan PM, Zuo S, et al. Requirement of src kinase lyn for induction of DNA synthesis by granulocyte colonystimulating factor.J Biol Chem. 1998;273:3230–3235.

    Article  CAS  PubMed  Google Scholar 

  40. Chin H, Arai A, Wakao H, Kamiyama R, Miyasaka N, Miura O. Lyn physically associates with the erythropoietin and may play a role in activation of the Stat5 pathway.Blood. 1998;91:3734–3745.

    CAS  PubMed  Google Scholar 

  41. Yu CL, Meyer DJ, Campbell GS, et al. Enhanced DNA-binding activity of Stat3-related protein in cells transformed by the Src oncoprotein.Science. 1995;269:81–83.

    Article  CAS  PubMed  Google Scholar 

  42. Yu CL, Jove R, Burakoff SJ. Constitutive activation of the Janus kinase-STAT pathway in T lymphoma overexpressing the Lck protein tyrosine kinase.J Immunol. 1997;159:5206–5210.

    CAS  PubMed  Google Scholar 

  43. Turkson J, Bowman T, Garcia R, Caldenhoven E, DeGroot RP, Jove R. Stat3 activation by Src induces specific gene regulation and is required for cell transformation.Mol Cell Biol. 1998;18:2545–2552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bromberg JF, Horvath CM, Besser D, Lathem WW, Darnell JE Jr. Stat3 activation is required for cellular transformation by v-src.Mol Cell Biol. 1998;18:2553–2558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bjorge JD, Jakymiw A, Fujita DJ. Selected glimpses into the activation and function of Src kinase.Oncogene. 2000;19:5620–5635.

    Article  CAS  PubMed  Google Scholar 

  46. Nada S, Okada M, MacAuley A, Cooper JA, Nakagawa H. Cloning of a complementary DNA for a protein tyrosine kinase that specifically phosphorylates a negative regulatory p60c-src.Nature. 1991;351:69–72.

    Article  CAS  PubMed  Google Scholar 

  47. Hatakeyama M, Kono T, Kobayashi N, et al. Interaction of the IL-2 receptor with the src-family kinase p56lck: identification of novel intermolecular association.Science. 1991;252:1523–1528.

    Article  CAS  PubMed  Google Scholar 

  48. Ernst M, Gearing DP, Dunn AR. Functional and biochemical association of hck with the LIF/IL-6 receptor signal transducing subunit gp130 in embryonic stem cells.EMBO J. 1994;13:1574–1584.

    Article  CAS  Google Scholar 

  49. Anderson SM, Jorgensen B. Activation of src-related tyrosine kinases by IL-3.J Immunol. 1995;155:1660–1670.

    CAS  PubMed  Google Scholar 

  50. Appleby MW, Kerner JD, Chien S, Maliszewski CR, Bondada S, Perlmutter RM. Involvement of p59fynT in interleukin-5 receptor signaling.J Exp Med. 1995;182:811–820.

    Article  CAS  PubMed  Google Scholar 

  51. Pazdrak K, Schreiber D, Forsythe P, Justement L, Alam R. The intracellular signal transduction mechanism of interleukin 5 in eosinophils: the involvement of lyn tyrosine kinase and the ras-raf-1-MEK-microtubule—associated protein kinase pathway.J Exp Med. 1995;181:1827–1834.

    Article  CAS  PubMed  Google Scholar 

  52. Corey S, Eguinoa A, Puyana TK, et al. Granulocyte macrophagecolony stimulating factor stimulates both association and activation of phosphoinositide 3OH-kinase and src-related tyrosine kinase(s) in human myeloid derived cells.EMBO J. 1993;12:2681–2690.

    Article  CAS  Google Scholar 

  53. Corey SJ, Burkhardt AL, Bolen JB, Geahlen RL, Tkatch LS, Tweardy DJ. Granulocyte-colony stimulating factor receptor signaling involves the formation of a three component complex with lyn and syk protein-tyrosine kinases.Proc Natl Acad Sci U S A. 1994;91:4683–4687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hallek M, Neumann C, Schaffer M, et al. Signal transduction of interleukin-6 involves tyrosine phosphorylation of multiple cytosolic proteins and activation of Src-family kinases Fyn, Hck, and Lyn in multiple myeloma cell lines.Exp Hematol. 1997;25:1367–1377.

    CAS  PubMed  Google Scholar 

  55. Streuli M, Hall LR, Saga Y, Schlossman SF, Saito H. Differential usage of three exons generates at least five different mRNAs encoding human leukocyte common antigens.J Exp Med. 1987;166:1548–1566.

    Article  CAS  PubMed  Google Scholar 

  56. Charbonneau H, Tonks NK, Walsh KA, Fischer EH. The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase.Proc Natl Acad Sci U S A. 1988;85:7182–7186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Trowbridge IS, Thomas ML. CD45: an emerging role as a protein phosphatase required for lymphocyte activation and development.Annu Rev Immunol. 1994;12:85–116.

    Article  CAS  PubMed  Google Scholar 

  58. Reth M, Wienands J. Initiation and processing of signals from the B cell antigen receptor.Annu Rev Immunol. 1997;15:453–479.

    Article  CAS  PubMed  Google Scholar 

  59. Kishihara K, Penninger J, Wallace VA, et al. Normal B lymphocyte development but impaired T cell maturation in CD45-exon 6 protein tyrosine phosphatase-deficient mice.Cell. 1993;74:143–156.

    Article  CAS  PubMed  Google Scholar 

  60. Kung C, Pingel JT, Heikinheimo M, et al. Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease.Nat Med. 2000;6:343–345.

    Article  CAS  PubMed  Google Scholar 

  61. Seavitt JR, White LS, Murphy KM, Loh DY, Perlmutter RG, Thomas ML. Expression of the p56lck Y505F mutation in CD45-deficient mice rescues thymocyte development.Mol Cell Biol. 1999;19:4200–4208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Irie-Sasaki J, Sasaki T, Matsumoto W, et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling.Nature. 2001;409:349–354.

    Article  CAS  PubMed  Google Scholar 

  63. van der Merwe PA, Davis SJ, Shaw AS, Dustin ML. Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition.Semin Immunol. 2000;12:5–21.

    Article  Google Scholar 

  64. Janes PW, Ley SC, Magee AI, Kabouridis PS. The role of lipid rafts in T cell antigen receptor (TCR) signalling.Semin Immunol. 2000;12:23–34.

    Article  CAS  PubMed  Google Scholar 

  65. Desai DM, Sap J, Schlessinger J, Weiss A. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase.Cell. 1993;73:541–554.

    Article  CAS  PubMed  Google Scholar 

  66. Jiang G, den Hertog J, Su J, Noel J, Sap J, Hunter T. Dimerization inhibits the activity of receptor-like protein tyrosine phosphatasealpha.Nature. 1999;401:606–610.

    Article  CAS  PubMed  Google Scholar 

  67. Majeti R, Xu Z, Parslow TG, et al. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity.Cell. 2000;103:1059–1070.

    Article  CAS  PubMed  Google Scholar 

  68. Hata H, Matsuzaki H, Sonoki T, et al. Establishment of a CD45-positive immature plasma cell line from an aggressive multiple myeloma with high serum lactate dehydrogenase.Leukemia. 1994;8:1768–1773.

    CAS  PubMed  Google Scholar 

  69. Witzig TE, Kimlinger TK, Ahmann GJ, et al. Detection of myeloma cells in the peripheral blood by flow cytometry.Cytometry. 1996;26:113–120.

    Article  CAS  PubMed  Google Scholar 

  70. Joshua D, Peterson A, Brown R, et al. The labelling index of primitive plasma cells determines the clinical behaviour of patients with myelomatosis.Br J Haematol. 1996;94:76–81.

    Article  CAS  PubMed  Google Scholar 

  71. Schneider U, van Lessen A, Huhn D, et al. Two subsets of peripheral blood plasma cells defined by differential expression of CD45 antigen.Br J Haematol. 1997;97:56–64.

    Article  CAS  PubMed  Google Scholar 

  72. Lynch KW, Weiss A. A model system for activation-induced alternative splicing of CD45 pre-mRNA in T cells implicates PKC and Ras.Mol Cell Biol. 2000;20:70–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kawano MM, Mahmoud MS, Ishikawa H. Cyclin D1 and p16INK4A are preferentially expressed in immature and mature myeloma cells, respectively.Br J Haematol. 1997;99:131–138.

    Article  CAS  PubMed  Google Scholar 

  74. Mahmoud MS, Ishikawa H, Fujii R, Kawano MM. Induction of CD45 expression and proliferation in U-266 myeloma cell line by interleukin-6.Blood. 1998;92:3887–3897.

    CAS  PubMed  Google Scholar 

  75. Dong F, Larner AC. Activation of Akt kinase by granulocyte colony-stimulating factor (G-CSF): evidence for the role of a tyrosine kinase activity distinct from the janus kinase.Blood. 2000;95:1656–1662.

    CAS  PubMed  Google Scholar 

  76. Corey SJ, Anderson SM. Src-related protein tyrosine kinases in hematopoiesis.Blood. 1999;93:1–14.

    CAS  PubMed  Google Scholar 

  77. Schwabe M, Brini AT, Bosco MC, et al. Disruption by interferon-α of an autocrine interleukin-6 growth loop in IL-6-dependent U266 myeloma cells by homologous and heterologous down-regulation of IL-6 receptor α- and β-chains.J Clin Invest. 1994;94:2317–2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ishikawa H, Tanaka H, Iwato K, et al. Effect of glucocorticoids on the biologic activities of plasma cells: Inhibition of interleukin-1β osteoclast activating factor-induced bone resorption.Blood. 1990;75:715–720.

    CAS  PubMed  Google Scholar 

  79. Klein B, Wijdenes J, Zhang XG, et al. Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia.Blood. 1991;78:1198–1204.

    CAS  PubMed  Google Scholar 

  80. Suzuki H, Yasukawa K, Saito T, et al. Anti-human interleukin-6 receptor antibody inhibits human myeloma growth in vivo.Eur J Immunol. 1992;22:1989–1993.

    Article  CAS  PubMed  Google Scholar 

  81. Sato K, Tsuchiya M, Saldanha J, et al. Reshaping a human antibody to inhibit interleukin-6 dependent tumor cell growth.Cancer Res. 1993;53:851–856.

    CAS  PubMed  Google Scholar 

  82. Ihara S, Nakajima K, Fukada T, et al. Dual control of neurite outgrowth by STAT3 and MAP kinase in PC12 cells stimulated with interleukin-6.EMBO J. 1997;16:5345–5352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Qiu Y, Ravi L, Kung H-J. Requirement of ErbB2 for signalling by interleukin-6 in prostate carcinoma cells.Nature. 1998;393:83–85.

    Article  CAS  PubMed  Google Scholar 

  84. Nakashima K, Yanagisawa M, Arakawa H, et al. Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300.Science. 1999;284:479–482.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Ishikawa.

About this article

Cite this article

Ishikawa, H., Tsuyama, N. & Kawano, M.M. Interleukin-6—Induced Proliferation of Human Myeloma Cells Associated with CD45 Molecules. Int J Hematol 78, 95–105 (2003). https://doi.org/10.1007/BF02983376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02983376

Key words

Navigation