Skip to main content
Log in

Diagnosis and treatment of epstein-barr virus-associated natural killer cell lymphoproliferative disease

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Epstein-Barr virus (EBV) exhibits tropism for both lymphocytes and epithelial cells and can induce both replicative (productive/ lytic) and latent (persistent) infections that result in a variety of human diseases.With regard to lymphocytes, latent EBV infection is linked to development of heterogeneous lymphoproliferative disease (LPD), such as B-cell LPD and T-cell/ natural killer cell (T/NK cell) LPD. Unlike B-cell LPD, LPD derived from T-cells and NK cells sometimes has overlapping clinical symptoms, as well as histologic and immunophenotypic features, because both types of cells are derived from a common precursor. However, determination of cell lineage is important in classification of lymphoid neoplasms, and combined modern techniques allows us to distinguish NK cell LPD from T-cell LPD in most instances. Because NK cell LPD seems to be heterogeneous in terms of clinical features, prognosis, and diagnosis and has a monoclonal or polyclonal (or oligoclonal) nature, this review attempts to clarify recent research and clinical findings and to establish diagnostic and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kawa K. Epstein-Barr virus-associated diseases in humans.Int J Hematol. 2000;71:108–117.

    CAS  PubMed  Google Scholar 

  2. Jones JF, Shurin S, Abramowsky C, et al. T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein- Barr virus infection.N Engl J Med. 1988;318:733–741.

    Article  CAS  PubMed  Google Scholar 

  3. Kikuta H, Taguchi Y, Tomizawa A, et al. Epstein-Barr virus genome-positive T lymphocytes in a boy with Kawasaki-like disease.Nature. 1988;333:455–457.

    Article  CAS  PubMed  Google Scholar 

  4. Ishihara S, Tawa A, Yumura-Yagi K, et al. Clonal T-cell lymphoproliferation containing Epstein-Barr (EB) virus DNA in a patient with chronic active EB virus infection.Jpn J Cancer Res. 1989;80: 99–101.

    CAS  PubMed  Google Scholar 

  5. Kawa-Ha K, Ishihara S, Ninomiya T, et al. CD3-negative lymphoproliferative disease of granular lymphocytes containing Epstein- Barr viral DNA.J Clin Invest. 1989;84:52–55.

    Article  Google Scholar 

  6. Oshimi K. Lymphoproliferative disorders of natural killer cells.Int J Hematol. 1996;63:279–290.

    Article  CAS  PubMed  Google Scholar 

  7. Kawa K, Ishihara S, Okamura T, Inoue M. Chronic active Epstein- Barr virus infection and lymphoproliferative diseases. In: Osato T, Takada K, Tokunaga M, eds.Epstein-Barr Virus and Human Cancer: Gann Monograph on Cancer Research No. 45. Tokyo: Japan Scientific Societies Press; 1998:139–147.

    Google Scholar 

  8. Jaffe ES. Classification of natural killer (NK) cell and NK-like T-cell malignancies.Blood. 1996;87:1207–1210.

    CAS  PubMed  Google Scholar 

  9. Chiang AK, Chan AC, Srivastava G, et al. Nasal/natural killer (NK)-cell lymphomas are derived from Epstein-Barr virusinfected cytotoxic lymphocytes of both NK- and T-cell lineage.Int J Cancer. 1997;73:332–338.

    Article  CAS  PubMed  Google Scholar 

  10. Liang R. Diagnosis and management of primary nasal lymphoma of T-cell or NK-cell origin.Clin Lymphoma. 2000;1:33–37.

    Article  CAS  PubMed  Google Scholar 

  11. Imamura N, Kusunoki Y, Kawa-Ha K, et al. Aggressive natural killer cell leukemia/lymphoma: report of four cases and review of the literature: possible existence of a new clinical entity originating from the third lineage of lymphoid cells.Br J Haematol. 1990;75: 49–59.

    Article  CAS  PubMed  Google Scholar 

  12. Mori N, Yamashita Y, Tsuzuki T, et al. Lymphomatous features of aggressive NK cell leukemia/lymphoma with massive necrosis, hemophagocytosis and EB virus infection.Histopathology. 2000; 37:363–371.

    Article  CAS  PubMed  Google Scholar 

  13. Akashi K, Mizuno S. Epstein-Barr virus-infected natural killer cell leukemia.Leuk Lymphoma. 2000;40:57–66.

    Article  CAS  PubMed  Google Scholar 

  14. Ishihara S, Oshima K,Tokura Y, et al. Hypersensitivity to mosquito bites conceals clonal lymphoproliferation of Epstein-Barr viral DNA-positive natural killer cells.Jpn J Cancer Res. 1997;88:82–87.

    CAS  PubMed  Google Scholar 

  15. Iwatuki K, Ohtsuka M, Harada H, et al. Clinicopathologic manifestations of Epstein-Barr virus-associated cutaneous lymphoproliferative disorders.Arch Dermatol. 1997;133:1081–1086.

    Article  Google Scholar 

  16. Cho KH, Choi WW, Youn CS, et al. Skin is the frequent site for involvement of peripheral T-cell and natural killer cell lymphomas in Korea.J Dermatol. 2000;27:500–507.

    CAS  PubMed  Google Scholar 

  17. Haan KM, Kwok WW, Longnecher R, Speck P. Epstein-Barr virus entry utilizing HLA-DP or HLA-DQ as a coreceptor.J Virol. 2000; 74:2451–2454.

    Article  CAS  PubMed  Google Scholar 

  18. Kaneko T, Fukuda J, Yoshihara T, et al. Natural killer (NK) cell lymphoma: report of a case with activated NK cells containing Epstein-Barr virus and expressing CD21 antigen, and comparative studies of their phenotype and cytotoxicity with normal NK cells.Br J Haematol. 1995;91:355–361.

    Article  CAS  PubMed  Google Scholar 

  19. Nagata H, Konno A, Kimura N, et al. Characterization of novel natural killer (NK)-cell and __ T-cell lines established from primary lesions of nasal T/NK-cell lymphomas associated with the Epstein-Barr virus.Blood. 2001;97:708–713.

    Article  CAS  PubMed  Google Scholar 

  20. Kieff E. Epstein-Barr virus and its replication. In: Fields BN, Knipe DM, Howly PM, eds.Field’s Virology.Philadelphia: Lippincott- Raven; 1996:2348–2396.

    Google Scholar 

  21. Elipoulos AG, Blake SMS, Floettmann JE, et al. Epstein-Barr virus-encoded latent membrane protein 1 activate the JNK pathway through its extreme C terminus via a mechanism involving TRADD and Traf2.J Virol. 1999;73:1023–1035.

    Google Scholar 

  22. Wang S, Rowe M, Lundgren E. Expression of the Epstein Barr virus transforming protein LMP 1 causes a rapid and transient stimulation of the Bcl-2 homologue Mcl-1 levels in B-cell lines.Cancer Res. 1996;56:4610–4613.

    CAS  PubMed  Google Scholar 

  23. Xu J,Ahmad A, Menezes J. Preferential localization of the Epstein- Barr virus (EBV) oncoprotein LMP 1 to nuclei in human T cells: implications for its role in the development of EBV genomepositive T-cell lymphomas.J Virol. 2002;76:4080–4086.

    Article  CAS  PubMed  Google Scholar 

  24. Noguchi T, Ikeda K, Yamamoto K, et al. Antisense oligodeoxynucleotides to latent membrane protein 1 induce growth inhibition, apoptosis and Bcl-2 suppression in Epstein-Barr virus (EBV)- transformed B-lymphoblastoid cells, but not in EBV-positive natural killer cell lymphoma cells.Br J Haematol. 2001;114:84–92.

    Article  CAS  PubMed  Google Scholar 

  25. Khanna R, Burrows SR, Argaet V, Moss DJ. Endoplasmic reticulum signal sequence facilitated transport of peptide epitopes restores immunogenicity of an antigen processing defective tumour cell line.Int Immunol. 1994;6:639–645.

    Article  CAS  PubMed  Google Scholar 

  26. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance.Adv Immunol. 2000;74:181–273.

    Article  CAS  PubMed  Google Scholar 

  27. Shen L, Ching A, Liu WP, et al. Expression of HLA class I, _2-microglobulin,TAP 1 and IL-10 in Epstein-Barr virus-associated nasal NK/T-cell lymphoma: implications for tumor immune escape mechanism.Int J Cancer. 2001;92:692–696.

    Article  CAS  PubMed  Google Scholar 

  28. Lautscham G, Mayrhofer S,Taylor G, et al. Processing of a multiple membrane spanning Epstein-Barr virus protein for CD8+ T cell recognition reveals a proteasome-dependent, transporter associated with antigen processing-independent pathway.J Exp Med. 2001;194:1053–1068.

    Article  CAS  PubMed  Google Scholar 

  29. Ohshima S, Ishii M, Asada H, et al. A possible mechanism of NK cell-lineage granular lymphocyte proliferative disorder (NKGLPD) in a patient with chronic active Epstein-Barr virus infection (CAEBV) and severe hypersensitivity to mosquito bites (SHMB).Intern Med. 2002;41:651–656.

    Article  PubMed  Google Scholar 

  30. Wong KF, Chan JK, Kwong YL. Identification of del (6)(q21q25) as a recurring chromosomal abnormalities in putative NK cell lymphoma/ leukemia.Br J Haematol. 1997;98:922–926.

    Article  CAS  PubMed  Google Scholar 

  31. Oshima K, Haraoka S, Ishihara S, et al. Analysis of chromosome 6q deletion in EBV-associated NK cell leukemia/lymphoma.Leuk Lymphoma. 2002;43:293–300.

    Article  Google Scholar 

  32. Siu LI, Wong KF, Chan JK, et al. Comparative genomic hybridization analysis of natural killer cell lymphoma/leukemia: recognition of consistent patterns of genetic alterations.Am J Pathol. 1999;155: 1419–1425.

    CAS  PubMed  Google Scholar 

  33. Li T, Hongyo T, Syaifudin M, et al. Mutation of the p53 gene in nasal NK/T-cell lymphoma.Lab Invest. 2000;80:493–499.

    CAS  PubMed  Google Scholar 

  34. Sakajiri S, Kawamata N, Egashira M, et al. Molecular analysis of tumor suppressor genes, Rb, p53, p16INK4A, p15INK4B and p14ARF in natural killer cell neoplasms.Jpn J Cancer Res. 2001;92: 1048–1056.

    CAS  PubMed  Google Scholar 

  35. Sugimoto K, Kawamata N, Sakajiri S, Oshimi K. Molecular analysis of oncogenes, ras family genes (N-ras, K-ras, H-ras), myc family genes (c-myc, N-myc) and mdm2 in natural killer cell neoplasms.Jpn J Cancer Res. 2002;93:1270–1277.

    CAS  PubMed  Google Scholar 

  36. Wolf J, Jox A, Skarbek H, et al. Selective loss of integrated Epstein- Barr virus genome after long-term cultivation of Burkitt’s lymphoma x B-lymphoblastoid cell hybrids due to chromatin instability at the integration site.Virology. 1995;212:179–185.

    Article  CAS  PubMed  Google Scholar 

  37. Jaffe ES, Krenacs L, Kumar S, et al. Extranodal peripheral T-cell and NK-cell neoplasms.Am J Clin Pathol. 1999;111(suppl 1): S46-S55.

    CAS  PubMed  Google Scholar 

  38. Oshima K, Liu Q, Koga T, et al. Classification of cell lineage and anatomical site, and prognosis of extranodal T-cell lymphomanatural killer cell, cytotoxic T lymphocyte, and non-NK/CTL types.Virchows Arch. 2002;440:425–435.

    Article  Google Scholar 

  39. Kimura H, Morita M, Yabuta Y, et al. Quantitative analysis of Epstein-Barr virus load by using a real-time PCR assay.J Clin Microbiol. 1999;37:132–136.

    CAS  PubMed  Google Scholar 

  40. Okamura T, Kishimoto T, Inoue M, et al. Unrelated bone marrow transplantation for EBV-associated T/NK-cell lymphoproliferative disease.Bone Marrow Transplant. 2003;31:105–111.

    Article  CAS  PubMed  Google Scholar 

  41. Kimura H, Hoshino Y, Kanegane H, et al. Clinical and virological characteristics of chronic active Epstein-Barr virus infection.Blood. 2001;98:280–286.

    Article  CAS  PubMed  Google Scholar 

  42. Nakamura S, Katoh E, Koshikawa T, et al. Clinicopathologic study of nasal T/NK-cell lymphoma among the Japanese.Pathol Int. 1997;47:38–53.

    Article  CAS  PubMed  Google Scholar 

  43. Quintanilla-Martinez L, Franklin J, Guerrero I, et al. Histological and immunophenotypic profile of nasal NK/T cell lymphomas from Peru: high prevalence of p53 overexpression.Hum Pathol. 1999;30:849–855.

    Article  CAS  PubMed  Google Scholar 

  44. Takahashi N, Miura I, Chubachi A, et al. A clinicopathological study of 20 patients with T/natural killer (NK)-cell lymphomaassociated hemophagocytic syndrome with special reference to nasal and nasal-type NK/T-cell lymphoma.Int J Hematol. 2001;74: 303–308.

    Article  CAS  PubMed  Google Scholar 

  45. Kim GE, Yang WI, Lee SW, et al. The significance of granzyme B expression in patients with angiocentric lymphoma of the head and neck.Cancer. 2001;91:2343–2352.

    Article  CAS  PubMed  Google Scholar 

  46. Egashira M, Kawamata N, Sugimoto K, et al. P-glycoprotein expression on normal and abnormally expanded natural killer cells and inhibition of P-glycoprotein function by cyclosporine A and its analogue.Blood. 1999;93:599–606.

    CAS  PubMed  Google Scholar 

  47. Quintanilla-Martinez L, Kremer M, Leller G, et al. p53 mutations in nasal natural killer/T-cell lymphoma from Mexico.Am J Pathol. 2001;159:2095–2105.

    CAS  PubMed  Google Scholar 

  48. Kawa K, Okamura T, Yagi K, et al. Mosquito allergy and Epstein- Barr virus-associated T/natural killer-cell lymphoproliferative disease.Blood. 2001;98:3137–3174.

    Article  Google Scholar 

  49. Nagafuji K, Fujisaki T, Arima F, Ohshima K. L-asparaginase induced durable remission of relapsed nasal NK/T-cell lymphoma after autologous peripheral blood stem cell transplantation.Int J Hematol. 2001;74:447–450.

    Article  CAS  PubMed  Google Scholar 

  50. Lian R, Chen F, Lee CK, et al. Autologous bone marrow transplantation for primary nasal T/NK cell lymphoma.Bone Marrow Transplant. 1997;19:91–93.

    Article  Google Scholar 

  51. Sasaki M, Matsue K, Takeuchi M, et al. Successful treatment of disseminated nasal NK/T-cell lymphoma using double autologous peripheral blood stem cell transplantation.Int J Hematol. 2000;71: 75–78.

    CAS  PubMed  Google Scholar 

  52. Okamura T, Hatsukawa Y, Arai H, et al. Blood stem-cell transplantation for chronic active Epstein-Barr virus with lymphoproliferation.Lancet. 2000;356:223–224.

    Article  CAS  PubMed  Google Scholar 

  53. Yagita M, Iwakura H, Kishimoto T, et al. Successful allogeneic stem cell transplantation from an unrelated donor for aggressive Epstein-Barr virus-associated clonal T-cell proliferation with hemophagocytosis.Int J Hematol. 2001;74:451–454.

    Article  CAS  PubMed  Google Scholar 

  54. Kawa K, Okamura T, Yasui M, et al. Allogeneic hematopoietic stem cell transplantation for Epstein-Barr virus-associated T/NK-cell lymphoproliferative disease.Crit Rev Oncol Hematol. 2002;44: 251–257.

    Article  PubMed  Google Scholar 

  55. Lei K, Lisa YS, Chan S, et al. Diagnostic and prognostic implications of circulating cell-free Epstein-Barr virus DNA in natural killer/T-cell lymphoma.Clin Cancer Res. 2002;8:29–34.

    CAS  PubMed  Google Scholar 

  56. Rooney CM, Heslop HE, Brenner MK. EBV specific CTL: a model for immune therapy.Vox Sang. 1998;74:497–498.

    CAS  PubMed  Google Scholar 

  57. Bharadwaj M, Sherritt M, Khanna R, Moss DJ. Contrasting Epstein-Barr virus-specific cytotoxic T cell responses to HLA A2- restricted epitopes in humans and HLA transgenic mice: implications for vaccine design.Vaccine. 2001;19:3769–3777.

    Article  CAS  PubMed  Google Scholar 

  58. Catalina MD, Sullivan JL, Bak KR, Luzuriaga K. Differential evolution and stability of epitope-specific CD8+ T cell responses in EBV infection.J Immunol. 2001;167:4450–4457.

    CAS  PubMed  Google Scholar 

  59. Tellam J, Sherritt M, Thomson S, et al. Targeting of EBNA 1 for rapid intracellular degradation override the inhibitory effects of the Gly-Ara repeat domain and restores CD8+ T cell recognition.J Biol Chem. 2001;276:33353–33360.

    Article  CAS  PubMed  Google Scholar 

  60. Gahn B, Siller-Lopez F, Pirooz AD, et al. Adenoviral gene transfer into dendritic cells efficiently amplifies the immune response to LMP2A antigen: a potential treatment strategy for Epstein-Barr virus-positive Hodgkin’s lymphoma.Int J Cancer. 2001;93:706–713.

    Article  CAS  PubMed  Google Scholar 

  61. Meij P, Leen A, Rickinson A, et al. Identification and prevalence of CD8+ T-cell responses directed against Epstein-Barr virusencoded latent membrane protein 1 and latent membrane protein 2.Int J Cancer. 2002;99:93–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisei Kawa.

About this article

Cite this article

Kawa, K. Diagnosis and treatment of epstein-barr virus-associated natural killer cell lymphoproliferative disease. Int J Hematol 78, 24–31 (2003). https://doi.org/10.1007/BF02983236

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02983236

Key words

Navigation