Skip to main content
Log in

Selective Expansion of Transduced Cells for Hematopoietic Stem Cell Gene Therapy

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Although gene transfer into hematopoietic stem cells holds a considerable therapeutic potential, clinical trials targeting this cell compartment have achieved limited success. Poor transduction efficiency with gene transfer vectors used in human studies has hindered delivering therapeutic genes to clinically relevant numbers of target cells. One way to overcome the lowefficiency problem is by selecting or expanding the number of genetically modified cells to a suprathreshold level to achieve clinical efficacy. This approach may be further classified into 2 categories: one is to transfer a drug resistance gene and eliminate unmodified cells with cytotoxic drugs, and the other is to confer a direct growth advantage on target cells.This review aims at an overview of recent advances involving these strategies, with some details of “selective amplifier genes,” a novel system that we have developed for specific expansion of genetically modified hematopoietic cells.Int J Hematol. 2002;76:299-304.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richter J, Karlsson S. Clinical gene therapy in hematology: past and future.Int J Hematol. 2001;73:162–169.

    Article  CAS  PubMed  Google Scholar 

  2. Emery DW, Nishino T, Murata K, Fragkos M, Stamatoyannopoulos G. Hematopoietic stem cell gene therapy.Int J Hematol. 2002;75: 228–236.

    Article  PubMed  Google Scholar 

  3. Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection.Mol Cell Biol. 1990;10:4239–4242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Orlic D, Girard LJ, Jordan CT, et al. The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction.Proc Natl Acad Sci U S A. 1996;93:11097–11102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Naldini L, Blömer U, Gallay P, et al. In vivo delivery and stable transduction of nondividing cells by a lentiviral vector.Science. 1996;272:263–267.

    Article  CAS  PubMed  Google Scholar 

  6. Miyoshi H, Smith KA, Mosier DE, et al. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors.Science. 1999;283:682–686.

    Article  CAS  PubMed  Google Scholar 

  7. Moscow JA, Huang H, Carter C, et al. Engraftment ofMDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy.Blood. 1999;94:52–61.

    PubMed  CAS  Google Scholar 

  8. Abonour R, Williams DA, Einhorn L, et al. Efficient retrovirusmediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells.Nat Med. 2000;6:652–658.

    Article  CAS  PubMed  Google Scholar 

  9. Hanenberg H, Xiao XL, Dilloo D, Hashino K, Kato I, Williams DA. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells.Nat Med. 1996;2:876–882.

    Article  CAS  PubMed  Google Scholar 

  10. Allay JA, Persons DA, Galipeau J, et al.In vivo selection of retrovirally transduced hematopoietic stem cells.Nat Med. 1998;4: 1136–1143.

    Article  CAS  PubMed  Google Scholar 

  11. Davis BM, Koc ON, Gerson SL. Limiting numbers of G156A Op6methylguanine-DNA methyltransferase-transduced marrow progenitors repopulate nonmyeloablated mice after drug selection.Blood. 2000;95:3078–3084.

    PubMed  CAS  Google Scholar 

  12. Sawai N, Zhou S, Vanin EF, Houghton P, Brent TP, Sorrentino BP. Protection andin vivo selection of hematopoietic stem cells using temozolomide, Op6-benzylguanine, and an alkyltransferase-expressing retroviral vector.Mol Ther. 2001;3:78–87.

    Article  CAS  PubMed  Google Scholar 

  13. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease.Science. 2000;288:669–672.

    Article  CAS  PubMed  Google Scholar 

  14. Hacein-Bey-Abina S, Le Deist F, Carlier F, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy.N Engl J Med. 2002;346:1185–1193.

    Article  CAS  PubMed  Google Scholar 

  15. Cavazzana-Calvo M.«in this issue»

  16. Kume A, Koremoto M, Mizukami H, et al. Selective growth advantage of wild-type lymphocytes in X-linked SCID recipients.Bone Marrow Transplant. 2002;30:113–118.

    Article  CAS  PubMed  Google Scholar 

  17. Mattioni T, Louvion J-F, Picard D. Regulation of protein activities by fusion to steroid binding domains.Methods Cell Biol. 1994;43: 335–352.

    Article  CAS  PubMed  Google Scholar 

  18. Ito K, Ueda Y, Kokubun M, et al. Development of a novel selective amplifier gene for controllable expansion of transduced hematopoietic cells.Blood. 1997;90:3884–3892.

    PubMed  CAS  Google Scholar 

  19. Danielian PS, White R, Hoare SA, Fawell SE, Parker MG. Identification of residues in the estrogen receptor that confer differential sensitivity to estrogen and hydroxytamoxifen.Mol Endocrinol. 1993;7:232–240.

    PubMed  CAS  Google Scholar 

  20. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous protein.Nucleic Acids Res. 1995;23:1686–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu R, Kume A, Matsuda KM, et al. A selective amplifier gene for tamoxifen-inducible expansion of hematopoietic cells.J Gene Med. 1999;1:236–244.

    Article  CAS  PubMed  Google Scholar 

  22. Yoshikawa A, Murakami H, Nagata S. Distinct signal transduction through the tyrosine-containing domains of the granulocyte colony-stimulating factor receptor.EMBO J. 1995;14:5288–5296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Matsuda KM, Kume A, Ueda Y, et al. Development of a modified selective amplifier gene for hematopoietic stem cell gene therapy.Gene Ther. 1999;6:1038–1044.

    Article  CAS  PubMed  Google Scholar 

  24. Kume A, Koremoto M, Xu R, et al. In vivo expansion of transduced murine hematopoietic cells with a selective amplifier gene.J Gene Med., in press.

  25. Hanazono Y, Nagashima T, Takatoku M, et al.In vivo expansion of transduced murine hematopoietic cells with a selective amplifier gene.Gene Ther. 2002;9:1055–1064.

    Article  CAS  PubMed  Google Scholar 

  26. Neff T, Blau CA. Pharmacologically regulated cell therapy.Blood. 2001;97:2535–2540.

    Article  CAS  PubMed  Google Scholar 

  27. Zeng H, Masuko M, Jin L, Neff T, Otto KG, Blau CA. Receptor specificity in the self-renewal and differentiation of primary multipotential hematopoietic cells.Blood. 2001;98:328–334.

    Article  CAS  PubMed  Google Scholar 

  28. Jin L, Zeng H, Chien S, et al.In vivo selection using a cell-growth switch.Nat Genet. 2000;26:64–66.

    Article  CAS  PubMed  Google Scholar 

  29. Ueda H, Kawahara M, Aburatani T, et al. Cell-growth control by monomeric antigen: the cell surface expression of lysozyme-specific Ig V-domains fused to truncated Epo receptor.J Immunol Methods. 2000;241:159–170.

    Article  CAS  PubMed  Google Scholar 

  30. Lawrence HJ, Sauvageau G, Humphries RK, Largman C. The role ofHOX homeobox genes in normal and leukemic hematopoiesis.Stem Cells. 1996;14:281–291.

    Article  CAS  PubMed  Google Scholar 

  31. Sauvageau G, Thorsteinsdottir U, Eaves CJ, et al. Overexpression ofHOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo.Genes Dev. 1995;9: 1753–1765.

    Article  CAS  PubMed  Google Scholar 

  32. Thorsteinsdottir U, Sauvageau G, Hough MR, et al. Overexpression ofHOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia.Mol Cell Biol. 1997;17:495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Antonchuk J, Sauvageau G, Humphries RK. HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation.Exp Hematol. 2001;29:1125–1134.

    Article  CAS  PubMed  Google Scholar 

  34. Antonchuk J*, Sauvageau G*, Humphries RK. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo.Cell. 2002;109: 39–45.

    Article  CAS  PubMed  Google Scholar 

  35. Kyba M, Perlingeiro RCR, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors.Cell. 2002;109:29–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Kume.

About this article

Cite this article

Kume, A., Hanazono, Y., Mizukami, H. et al. Selective Expansion of Transduced Cells for Hematopoietic Stem Cell Gene Therapy. Int J Hematol 76, 299–304 (2002). https://doi.org/10.1007/BF02982687

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982687

Key words

Navigation