Skip to main content

Advertisement

Log in

Diffuse Large B-Cell Lymphoma: Insights Gained from Gene Expression Profiling

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Analysis of global gene expression with DNA microarrays has great potential to improve the understanding of tumorigenesis, advance tumor diagnosis and classification, and affect cancer treatment. Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin’s lymphoma. However, we now realize that the disease is extremely heterogeneous. This review summarizes the progress in understanding DLBCL that has been made as a result of the application of gene expression profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project.Blood. 1997;89:3909–3918.

    Google Scholar 

  2. Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group.Blood. 1994;84:1361–1392

    CAS  PubMed  Google Scholar 

  3. Harris NL, Jaffe ES, Diebold J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting- Airlie House, Virginia, November 1997.J Clin Oncol. 1999;17:3835–3849.

    Article  CAS  PubMed  Google Scholar 

  4. Lossos IS, Alizadeh AA, Diehn M, et al. Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes.Proc Natl Acad Sci U S A. 2002;99:8886–8891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response.Proc Natl Acad Sci U S A. 2001;98:5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns.Proc Natl Acad Sci U S A. 1998;95:14863–14868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.Nature. 2000;403:503–511.

    Article  CAS  PubMed  Google Scholar 

  8. Alizadeh A, Eisen M, Davis R, et al. The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes.Cold Spring Harb Symp Quant Biol. 1999;64:71–78.

    Article  CAS  PubMed  Google Scholar 

  9. A predictive model for aggressive non-Hodgkin’s lymphoma.The International Non-Hodgkin’s Lymphoma Prognostic Factors Project.N Engl J Med. 1993;329:987–994.

    Article  Google Scholar 

  10. MacLennan IC. Germinal centers.Annu Rev Immunol. 1994;12:117–139.

    Article  CAS  PubMed  Google Scholar 

  11. Klein U, Goossens T, Fischer M, et al. Somatic hypermutation in normal and transformed human B cells.Immunol Rev. 1998;162:261–280.

    Article  CAS  PubMed  Google Scholar 

  12. Lossos IS, Okada CY, Tibshirani R, et al. Molecular analysis of immunoglobulin genes in diffuse large B-cell lymphomas.Blood. 2000;95:1797–1803.

    PubMed  CAS  Google Scholar 

  13. Lossos IS, Alizadeh AA, Eisen MB, et al. Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in acti vated B cell-like diffuse large cell lymphomas.Proc Natl Acad Sci U S A. 2000;97:10209–10213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang JZ, Sanger WG, Greiner TC, et al. The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile.Blood. 2002;99:2285–2290.

    Article  CAS  PubMed  Google Scholar 

  15. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-Bcell lymphoma.N Engl J Med. 2002;346:1937–1947.

    Article  PubMed  Google Scholar 

  16. Lossos IS, Jones KD, Warnke R, et al. The expression of a single gene, BCL-6, strongly predicts survival in patients with diffuse large B-cell lymphoma.Blood. 2001;98:945–951.

    Article  CAS  PubMed  Google Scholar 

  17. Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning.Nat Med. 2002;8:68–74.

    Article  CAS  PubMed  Google Scholar 

  18. Davis RE, Brown KD, Siebenlist U, Staudt LM. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells.J Exp Med. 2001;194:1861–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baeuerle PA, Baltimore D. NF-kappa B: ten years after.Cell. 1996;87:13–20.

    Article  CAS  PubMed  Google Scholar 

  20. Wulczyn FG, Krappmann D, Scheidereit C. The NF-kappa B/Rel and I kappa B gene families: mediators of immune response and inflammation.J Mol Med. 1996;74:749–769.

    Article  CAS  PubMed  Google Scholar 

  21. Lossos IS, Alizadeh AA, Rajapaksa R, Tibshirani R, Levy R. HGAL is a novel interleukin-4-inducible gene that strongly predicts survival in diffuse large B-cell lymphoma.Blood. 2003;101:433–440.

    Article  CAS  PubMed  Google Scholar 

  22. Christoph T, Rickert R, Rajewsky K. M17: a novel gene expressed in germinal centers.Int Immunol. 1994;6:1203–1211.

    Article  CAS  PubMed  Google Scholar 

  23. Cambier JC. Antigen and Fc receptor signaling: the awesome power of the immunoreceptor tyrosine-based activation motif (ITAM).J Immunol. 1995;155:3281–3285.

    PubMed  CAS  Google Scholar 

  24. Acker B, Hoppe RT, Colby TV, Cox RS, Kaplan HS, Rosenberg SA. Histologic conversion in the non-Hodgkin’s lymphomas.J Clin Oncol. 1983;1:11–16.

    Article  CAS  PubMed  Google Scholar 

  25. Horning SJ, Rosenberg SA. The natural history of initially untreated low-grade non-Hodgkin’s lymphomas.N Engl J Med. 1984;311:1471–1475.

    Article  CAS  PubMed  Google Scholar 

  26. Armitage JO, Sanger WG, Weisenburger DD, et al. Correlation of secondary cytogenetic abnormalities with histologic appearance in non-Hodgkin’s lymphomas bearing t(14;18)(q32;q21).J Natl Cancer Inst. 1988;80:576–580.

    Article  CAS  PubMed  Google Scholar 

  27. Richardson ME, Chen QG, Filippa DA, et al. Intermediate- to high-grade histology of lymphomas carrying t(14;18) is associated with additional nonrandom chromosome changes.Blood. 1987;70:444–447.

    PubMed  CAS  Google Scholar 

  28. Yunis JJ, Frizzera G, Oken MM, McKenna J, Theologides A, Arnesen M. Multiple recurrent genomic defects in follicular lymphoma: a possible model for cancer.N Engl J Med. 1987;316:79–84.

    Article  CAS  PubMed  Google Scholar 

  29. Hough RE, Goepel JR, Alcock HE, Hancock BW, Lorigan PC, Hammond DW. Copy number gain at 12q12-14 may be important in the transformation from follicular lymphoma to diffuse large B cell lymphoma.Br J Cancer. 2001;84:499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yano T, Jaffe ES, Longo DL, Raffeld M. MYC rearrangements in histologically progressed follicular lymphomas.Blood. 1992;80:758–767.

    PubMed  CAS  Google Scholar 

  31. Sander CA, Yano T, Clark HM, et al. p53 mutation is associated with progression in follicular lymphomas.Blood. 1993;82:1994–2004.

    PubMed  CAS  Google Scholar 

  32. Lo Coco F, Gaidano G, Louie DC, Offit K, Chaganti RS, Dalla- Favera R. p53 mutations are associated with histologic transformation of follicular lymphoma.Blood. 1993;82:2289–2295.

    PubMed  Google Scholar 

  33. Lossos IS, Levy R. Higher-grade transformation of follicle center lymphoma is associated with somatic mutation of the 5_ noncoding regulatory region of the BCL-6 gene.Blood. 2000;96:635–639.

    PubMed  CAS  Google Scholar 

  34. Szereday Z, Csernus B, Nagy M, Laszlo T, Warnke RA, Matolcsy A. Somatic mutation of the 5′ noncoding region of the BCL-6 gene is associated with intraclonal diversity and clonal selection in histological transformation of follicular lymphoma.Am J Pathol. 2000;156:1017–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matolcsy A, Casali P, Warnke RA, Knowles DM. Morphologic transformation of follicular lymphoma is associated with somatic mutation of the translocated Bcl-2 gene.Blood. 1996;88:3937–3944.

    PubMed  CAS  Google Scholar 

  36. Elenitoba-Johnson KS, Gascoyne RD, Lim MS, Chhanabai M, Jaffe ES, Raffeld M. Homozygous deletions at chromosome 9p21 involving p16 and p15 are associated with histologic progression in follicle center lymphoma.Blood. 1998;91:4677–4685.

    PubMed  CAS  Google Scholar 

  37. Pinyol M, Cobo F, Bea S, et al. p16(INK4a) gene inactivation by deletions, mutations, and hypermethylation is associated with transformed and aggressive variants of non-Hodgkin’s lymphomas.Blood. 1998;91:2977–2984.

    PubMed  CAS  Google Scholar 

  38. Raffeld M, Yano T, Hoang AT, et al. Clustered mutations in the transcriptional activation domain of Myc in 8q24 translocated lymphomas and their functional consequences.Curr Top Microbiol Immunol. 1995;194:265–272.

    PubMed  CAS  Google Scholar 

  39. Bahram F, von der Lehr N, Cetinkaya C, Larsson LG. c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover.Blood. 2000;95:2104–2110.

    PubMed  CAS  Google Scholar 

  40. Hoang AT, Lutterbach B, Lewis BC, et al. A link between increased transforming activity of lymphoma-derived MYC mutant alleles, their defective regulation by p107, and altered phosphorylation of the c-Myc transactivation domain.Mol Cell Biol. 1995;15:4031–4042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, WoodgettJR. Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo.Oncogene. 1994;9:59–70.

    PubMed  CAS  Google Scholar 

  42. Martinez-Climent JA, Alizadeh AA, Segraves R, et al. Transformation of follicular lymphoma to diffuse large cell lymphoma is associated with a heterogeneous set of DNA copy number and gene expression alterations [epub ahead of print].Blood. 2002;Oct 24.

  43. Prendergast GC. Mechanisms of apoptosis by c-Myc.Oncogene. 1999;18:2967–2987.

    Article  CAS  PubMed  Google Scholar 

  44. Felsher DW, Zetterberg A, Zhu J, Tlsty T, Bishop JM. Overexpression of MYC causes p53-dependent G2 arrest of normal fibroblasts.Proc Natl Acad Sci U S A. 2000;97:10544–10548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Lossos, I.S., Levyb, R. Diffuse Large B-Cell Lymphoma: Insights Gained from Gene Expression Profiling. Int J Hematol 77, 321–329 (2003). https://doi.org/10.1007/BF02982638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982638

Key words

Navigation