Skip to main content
Log in

Isoflavones extracted fromsophorae fructus upregulate IGF-I and TGF-β and inhibit osteoclastogenesis in rat born marrow cells

  • Research Articles
  • Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Isoflavones have been a central subject in research on the natural phytoestrogens found inLeguminosae. Their effects on bone formation and remodeling are important in that they can act like estrogen by binding on estrogen receptors on the target cell surface. We, therefore, believed that isoflavones may help in the treatment of patients with estrogen deficiency disease such as estrogen replacement therapy (ERT) for osteoporosis. As commonly known, osteoporosis is one of the hormonal deficiency diseases, especially in menopausal women. When estrogen is no longer produced in the body a remarkable bone remodeling process occurs, and the associated events are regulated by growth factors in the osteoblast lineage. In the present study, we investigated whether isoflavones (Isocal) extracted fromSophorae fructus affect the growth factors IGF-I and TGF-P that have been known to be related with bone formation. In the study, we found that the active control (PIll) effectively enhanced the level of nitric oxide (NO) and growth factors, and thereby inhibited osteoclastogenesis. The most efficient concentration was 10−8% within five days, whereas the comparative control (soybean isoflavone) was not as effective even at a lower concentration. In conclusion, the products which contain enriched glucosidic isoflavone and nutrient supplements such as shark cartilage and calcium can be used for osteoporosis therapy by enhancing the production of IGF-I and TGF-β Furthermore, the NO produced through endothelial constitutive NO synthase (ecNOS) may play a role in inhibiting bone reabsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adlercreutz, H., Phyto-oestrogens and cancer.Lancet Oncology, 3, 364–373 (2002).

    Article  PubMed  Google Scholar 

  • Aguirre, J., Buttery, L., O’Shaughnessy, M., Afzal, F., Fernandez de Marticorena, I., Hukkanen, M., Huang, P., Manlntyre, I., and Polak, J., Endothelial nitric oxide synthase gene-deficient mice demonstrate marked retardation in postnatal bone formation, reduced bone volume, and defects in osteoblast maturation and activity.Am. J. Pathol., 158(1), 247–257 (2001).

    PubMed  CAS  Google Scholar 

  • Amonkar, M. M. and Mody, R., Developing profiles of postmenopausal women being prescribed oestrogen therapy to prevent osteoporosis.J. community Health, 27, 335–350 (2002).

    Article  PubMed  Google Scholar 

  • Armpur, K. E. and Ralston, S. H., Estrogen upregulates endothelial constitutive nitric oxide synthase expression in human osteoblast-like cells.Endocrinology, 139, 799–802 (1998).

    Article  Google Scholar 

  • Aubin, J. E. and Bonnelye, E., Osteoprotegerin and its ligand: A new paradigm for regulation of osteoclastogenesis and bone reabsorption.Osteoporos. Int., 11, 905–913 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Baylink, D. J., Finkelman, R. D., and Moban, S., Growth factors to stimulate bone formation.J. Bone Miner. Res., 2(8), S565-S572 (1993).

    Article  Google Scholar 

  • Brandi, M. L., Hukkanen, M., Umeda, T., Moradi-Bidhendi, N., Bianchi, S., Gross, S. S., Polak, J. M., and Macintyre, I. Bidirectional regulation of osteoclast function by nitric oxide synthesis isofors.Proc. Natl. Acad. Sci. USA, 92, 2954–2958 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Bilezikian, J. P., Morishima, A., Bell, J., and Grumbach, M. M., Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency.N. Engl. J. Med., 339, 599–603 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Centrella, M., McCarthy, T., and Cannalis, E., Transforming growth factor-beta and remodeling of bone.J. Bone Joint Surg. Am., 73, 1418–1428 (1991).

    PubMed  CAS  Google Scholar 

  • Duncan, A. M., Phipps, W. R., and Kurzer, M. S., Phyto-oestrogen.Best Practice & Research Clinical Endocrinology and Metabolism, 17, 253–271 (2003).

    Article  CAS  Google Scholar 

  • Eastel, R., Treatment of postmenopausal osteoporosis.N. Engl. J. Med., 338, 736–746 (1998).

    Article  Google Scholar 

  • Greenfield, E. M., Bi, Y., and Miyauchi, A., Regulation of osteoclast activity.Life Sicence, 65, 1087–1102 (1999).

    Article  CAS  Google Scholar 

  • Joo, S. S., Chang, J. K., Park, J. H., Kang, H. C., and Lee, D. I., Immuno activation of lectin-conjugated praecoxin A on IL-6, IL-12 expression.Arch. Pharm. Res., 25, 954–963 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kanamaru, Y., Takada, T., Saura, R., and Mizuno. K., Effect of nitric oxide on mouse clonal osteogenic cell, MC3T3-E1, proliferationin vitro.Kobe J. Med. Sci., 47, 1–11 (2001).

    PubMed  CAS  Google Scholar 

  • Klein-Nulend, J., Helfrich, M. H., Sterck, J. G., MacPherson, H., Joldersma, M., Ralson, S. H., Semeins, C. M., and Burger, E. H., Nitric oxide response to shear stress by human bone cell culture is endothelial nitric oxide synthase dependant.Biochem. Biophys. Res. Commun., 250, 108–114 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Lian, J., Stein, G., Canalis, E., Robey, P., and Boskey, A., Bone formation: osteoblast lineage cells, growth factors, matrix proteins, and the mineralization process in. In Favus M, ed. Primer on the metabolic bone disease and disorders of mineral metabolism. Vol. 1. Philadelphia: Lippincott Williams and Wilkins (1999).

    Google Scholar 

  • Messina, M. and Messina, V., Soyfood, soybean isoflavone, abd bone health: a brief overview.J. Renal Nutrition, 10, 63–68 (2000).

    Article  CAS  Google Scholar 

  • Mundy, G., Bone modeling. In: Favus M., ed. Primer on the metabolic bone disease and disorders of mineral metabolism. Vol. 1. 4th ed. Philadelphia, Lippincott Williams and Wilkins (1999).

    Google Scholar 

  • Mundy, G. R., Bone remodeling and its disorders (ed. M. Dunits). London, UK (1995).

  • Nakagawa, N., Kinosaki, M., Yamaguchi, K., Shima, N., Yasuda, H., Yano, K., Morinaga, T., and Higashio, K., RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis.Biochem. Biophys. Res. Commun., 253, 395–400 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Pacifici, R., Cytokines, estrogen and postmenopausal osteoporosis-the second decade.Endocrinology, 139, 2659–2661 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Raisz, L. G., The osteoporosis revolution.Ann. Intern. Med., 126, 458–462 (1997).

    PubMed  CAS  Google Scholar 

  • Riggs, B. L., Khosia, S., and Melton, L. J., A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men.J. Bone Miner. Res., 13, 763–773 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Setchell, K. D., Abstract presented at: Second international symposium on the role of soy in preventing and treating chronic disease. Brussel Belgium (1996).

    Google Scholar 

  • Swolin-Eide, D. and Ohlsson, C., Effects of Cortisol on the expression of interleukin-6 and interleukin-1β in human osteoblast like cells.J. Endocrinology., 156, 107–114 (1998).

    Article  CAS  Google Scholar 

  • Udagawa, N., Takahashi, N., Matsuzaki, K., Jimi, E., Tsurukai, T., Itoh, K., Nakagawa, H., Yasuda, H., Goto, M., Tsuda, E., Higashio, K., Martin, T. J., and Suda, T., Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand.Bone, 5, 517–523 (1999).

    Article  Google Scholar 

  • van’t Hof, R. J. and Ralston, S. H., Nitric oxide and bone.Immunology, 103, 255–261 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Warren, M. P., Shortle, B., and Dominguez, J. E., Use of alternative therapies in menopause.Best Practice & Research Clinical Obstetrics and Gynaecology, 16(3), 411–448 (2002).

    Article  Google Scholar 

  • Wimalawansa, S. J., De Marco, G., Gangula, P., and Yallampalli, Nitric oxide donor alleviates ovariectomy-induced bone loss.Bone, 18, 301–304 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, M. and Gao, Y. H., Inhibitory effect of genistein on bone reabsorption in tissue culture.Biochem. Phamacol., 55, 71–76 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Ik Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joo, SS., Won, TJ., Kang, HC. et al. Isoflavones extracted fromsophorae fructus upregulate IGF-I and TGF-β and inhibit osteoclastogenesis in rat born marrow cells. Arch Pharm Res 27, 99–105 (2004). https://doi.org/10.1007/BF02980054

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02980054

Key words

Navigation