Skip to main content
Log in

Role of Disulfide Bond of Arylsulfate Sulfotransferase in the Catalytic Activity

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Bacterial arylsulfate sulfotransferase (ASST) catalyzes the transfer of sulfate group from a phenyl sulfate ester to a phenolic acceptor. The promoter region and the transcription start sites of Enterobacter amnigenus astA have been determined by primer extension analysis. Northern blot analysis resolved two mRNA species with lengths of 3.3 and 2.0 kb, which correspond to the distances between the transcriptional initiation sites and the two inverted repeat sequences (IRSs). By length, the 3.3 kb RNA could comprise the three-gene (astA with dsbA and dsbB) operon. ASST has three highly conserved cysteine residues. Reducing and non-reducing SDS-PAGE and activity staining showed that disulfide bond is needed for the activity of the enzyme. To identify the cysteine residues responsible for the disulfide bond formation, a series of Cys to Ser mutants has been constructed and the enzymatic activity was measured. Based on the results, we assumed that the first cysteine (Cys349) might be involved in disulfide bond mainly with the second cysteine (Cys445) and result in active conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baek, M. C., Kim, S. K., Kim, D. H., Kim, B. K., and Choi, E. C., Cloning and sequencing of theKlebsieila K-36astA gene, encoding an arylsulfate sulfotransferase.Microbiol. Immunol., 40, 531–537 (1996).

    PubMed  CAS  Google Scholar 

  • Bardwell, J. C., McGovern, K., and Beckwith, J., Identification of a protein required for disulfide bond formationin vivo.Cell, 67, 581–589 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Chai, C. L. L. and Lowe, G., The mechanism and stereochemical course of sulfuryl transfer catalyzed by the acryl sulfotransferase fromEubacterium A-44.Bioorg. Chem., 20, 181–188 (1992).

    Article  CAS  Google Scholar 

  • Dodgson, K. S. and Tudball, N., The metabolite of the sulfate group of potassium p-nitrophenyl[35S] sulfate.Biochem. J., 74, 154–159(1960).

    PubMed  CAS  Google Scholar 

  • Feinberg, A. P. and Vogelstein, B., A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem., 132, 6–13 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Harley, C. B. and Reynolds, R. P., Analysis ofE. coli promoter sequences.Nucleic Acids Res., 15, 2343–2361 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Kahnert, A. and Kertesz M. A., Characterization of a sulfur-regulated oxygenative alkylsulfatase fromPseudomonas putida S-313.J. Biol. Chem., 275, 31661–31667 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kang, J. W. Kwon, A. R., Kim, D. H., and Choi, E. C., Cloning and sequencing of theastA gene encoding arylsulfate sulfotransferase fromSalmonella typhimurium. Bio.Pharm. Bull., 24, 570–574 (2001).

    Article  CAS  Google Scholar 

  • Kim, D. H., Kim, H. S., and Kobashi, K., Purification and characterization of novel sulfotransferase obtained fromKlebsiella K-36, an intestinal bacterium of rat.J. Biochem., 112, 456–460 (1992).

    PubMed  CAS  Google Scholar 

  • Kim, D. H. and Kobashi, K., The role of intestinal flora in metabolism of phenolic sulfate esters.Biochem. Pharmacol., 35, 3507–3510 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. H., Konishi, L., and Kobashi, K., Purification, characterization and reaction mechanism of novel arylsulfotransferase obtained from an anaerobic bacterium of human intestine.Biochem. Biophys. Acta, 872, 33–41 (1986).

    PubMed  CAS  Google Scholar 

  • Kobashi, K., Fukaya, Y., Kim, D. H., Akao, T., and Takebe, S., A novel type of arylsulfotransferase obtained from an anaerobic bacterium of human intestine.Arch. Biochem. Biophys., 245, 537–539 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Kunkel, T. A., Rapid and efficient site-specific mutagenesis without phenotypic selection.Proc. Natl. Acad. Sci. U.S.A., 82, 488–492 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Kunkel, T. A., Roberts J. D., and Zakour R. A., Rapid and efficient site-specific mutagenesis without phenotypic selection.Methods Enzymol., 154, 367–382 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Kwon, A. R., Oh, T. G., Kim, D. H., and Choi, E. C., Molecular cloning of the arylsulfate sulfotransferase gene and characterization of its product fromEnterobacter amnigenus AR-37.Protein Expression Purif., 17, 366–372 (1999).

    Article  CAS  Google Scholar 

  • Kwon, A. R., Yun, H. J., and Choi, E. C., Kinetic mechanism and identification of the active site tyrosine residue in Enterobacter amnigenus arylsylfate sulfotrasferase.Biochem. Biophys. Res. Commun., 285, 526–529 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 221, 680-685 (1970).

    Google Scholar 

  • Lee, N. S., Kim, B. T., Kim, D. H., and Kobashi, K., Purification and reaction mechanism of arylsulfate sulfotransferase fromHaemophilus K-12, a mouse intestinal bacterium.J. Biochem., 118, 796–801 (1995).

    PubMed  CAS  Google Scholar 

  • Michael, H. M. and Bernard, L. H., Release of alkaline phosphatase from cells ofEscherichia coli upon lysozyme spheroplast formation.J. Biol. Chem., 3, 889–1893 (1964).

    Google Scholar 

  • Missiakas, D., C., Georgopoulos, and Raina S., Identification and characterization of theEscherichia coli genedsbB, whose product is involved in the formation of disulfide bonds in vivo.Proc. Natl. Acad. Sci. U.S.A., 90, 7084–7088 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W., Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250.Electrophoresis, 9, 255–262 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Reeder, T. and Schleif, R., AraC protein can activate transcription from only one position and when pointed in only one direction.J. Mol. Biol., 231, 205–218 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Roy, A. B., Sulfotransferases.In Sulfation of Drugs and Related Compounds (Mulder, G. J., Ed.), pp. 131–185, CRC Press, Boca Raton, FL (1981).

    Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. (1989).

    Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R., DNA sequencing with chain-terminating inhibitors.Proc. Natl. Acad. Sci. U.S.A., 74, 5463–5467 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Sekura, R. D., Duffel, M. W., and Jakoby, W. B., Arylsulfotrans-ferases.Methods Enzymol., 77, 197–206 (1981).

    Article  PubMed  CAS  Google Scholar 

  • von Heijne, G. and Abrahmsen, L., Species-specific variation in signal peptide design. Implications for protein secretion in foreign hosts.FEABS Lett., 244, 439–446 (1989).

    Article  Google Scholar 

  • Yao, R. and Guerry, P., Molecular cloning and site-specific mutagenesis of a gene involved in arylsulfate production inCampylobacter jejuni.J. Bactehol., 178, 3335–3338 (1996).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eung-Chil Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, AR., Choi, EC. Role of Disulfide Bond of Arylsulfate Sulfotransferase in the Catalytic Activity. Arch Pharm Res 28, 561–565 (2005). https://doi.org/10.1007/BF02977759

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977759

Key words

Navigation