Skip to main content
Log in

Endogenous sphingolipid metabolites related to the growth inSphingomonas chungbukensis

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Sphingolipids are present in animals, plants, fungi, yeasts and some bacteria. In mammalian cells sphingolipids act as lipid mediators for cell growth, differentiation, apoptosis and angio-genesis. In contrast, in bacteria the biological significance of sphingolipids has not been fully elucidated and sphingolipid metabolism has not been investigated. The aim of this study was to compare the pattern of sphingolipid metabolites in HIT-T15 ß cells originating from hamster pancreas to that in the bacterial strainSphingomonas chungbukensis DJ77, under various culture conditions. It was found that the concentration of cellular sphinganine (Sa) in S.chungbukensis was higher than that of sphingosine (So), while the level of cellular So in HIT-T15 cells was higher than that of Sa. Aeration and shaking during culture increased bacterial growth in S.chungbukensis, and the contents of So and Sa were also elevated. These results indicate that a denovo sphingolipid pathway appeared to be active in bacteria and that bacterial growth may be closely related to Sa levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beeler, T., Gable, K., Zhao, C., and Dunn, T., A novel protein, CSG2p, is required for Ca2+ regulation inSaccharomyces cerevisiae.J. Biol. Chem., 269, 7279–7284 (1994).

    PubMed  CAS  Google Scholar 

  • Dickson, R. C. and Lester, R. L, Yeast sphingolipids.Biochim. Biophys. Acta., 1426, 347–357 (1999).

    PubMed  CAS  Google Scholar 

  • Dickson R. C, Nagiec E. E., Wells G. B., Nagiec M. M., and Lester R. L., Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid inSaccharomyces cerevisiae, requires the IPT1 (YDR072c) gene.J. Biol. Chem., 272, 29620–29625 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Dickson, R. C., Sumanasekera, C, and Lester, R. L., Functions and metabolism of sphingolipids inSaccharomyces cerevisiae.Prog. Lipid Res., 45, 447–465 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Gaver, R. C. and Sweeley, C. C., Methods for methanolysis of sphingolipids and direct determination of long-chain bases by gas chromatography.J. Am. Oil Chem. Soc, 42, 294–298 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Grilley, M. M., Stock, S. D., Dickson, R. C., Lester, R. I., and Takemoto, J. Y, Syringomycin action geneSYR2 is essential for sphingolipid 4-hydroxylation inSaccharomyces cerevisiae.J. Biol. Chem., 273, 11062–11068 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Guillas, I., Kirchman, P. A., Chuard, R., Pfefferli, M., Jiang, J. C., Jazwinski, S. M., and Conzelmann A., C26-CoA-dependent ceramide synthesis ofSaccharomyces cerevisiae is operated by Lag 1p and lac 1p.J. EMBO, 20, 2655–2665 (2001).

    Article  CAS  Google Scholar 

  • Hakomori, S. and Igarashi, Y, Gangliosides and glycosphing- olipids as modulators of cell growth, adhesion, and trans-membrane signaling.Adv. Lipid Res., 25, 147–162 (1993).

    PubMed  CAS  Google Scholar 

  • Ikushiro, H., Hayashi, H., and Kagamiyama, H., Bacterial serine palmitoyltransferase: a water-soluble homodimeric prototype of the eukaryotic enzyme.Biochim. Biophys. Acta., 1647, 116–120 (2003).

    PubMed  CAS  Google Scholar 

  • Kawahara, K., Moll, H., Knirel, Y A., Seydel, U., and Zahringer, U., Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacteriumSphingomonas capsulata.Eur. J. Biochem., 267,1837–1846 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, S., Moriguchi, R., Sekiya, K., Nakai, T., Ono, E., Kume, K., and Kawahara, K., The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacteriumSphingomonas paucimobilis.J. Bacteriol., 176, 284–290 (1994).

    PubMed  CAS  Google Scholar 

  • Kim, S. J., Chung, J. S., Bae, K. S., and Kim, Y C, Polyphasic assignment of an aromatic-degradingPseudomonas sp., strain DJ77, in the genusSphingomonas asSphingomonas chungbukensis sp. nov.Int. J. Syst. Evol. Microbiol., 50, 1641–1647 (2000).

    PubMed  CAS  Google Scholar 

  • Kim, C. K., Kim, J. W., Kim, Y C, and Mheen, T. I., Isolation of aromatic hydrocarbon-degrading bacteria and genetic characterization of their plasmid genes.Kor. J. Microbiol., 24, 67–72 (1986).

    CAS  Google Scholar 

  • Min J. K., Yoo H. S., Lee E. Y, Lee W. J., and Lee Y. M., Simultaneous quantitative analysis of sphingoid base 1- phosphates in biological samples o-phthalaldehyde precolumn derivatization after dephosphorylation with alkaline Phosphatase.Anal. Biochem., 303, 167–175 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Naka, T., Fujiwara, N., Yano, I., Maeda, S., Doe, M., Minamino, M., Ikeda, N., Kato, Y, Watabe, K., Kumazawa,Y, Tomiyasu, I., and Kobayashi K., Structural analysis of sphingophos- pholipids derived fromSphingobactehum spiritivorum, the type species of genusSphingobactehum.Biochim. Biophys. Acta., 1635, 83–92 (2003).

    PubMed  CAS  Google Scholar 

  • Nichols, F. C, Novel ceramides recovered fromPorphyro-monas gingivalis: relationship to adult Periodontitis.J. Lipid Res., 39, 2360–2372 (1998).

    PubMed  CAS  Google Scholar 

  • White, D. C, Sutton, S. D., and Ringelberg, D. B., The genusSphingomonas: physiology and ecology.Cur. Opin. Biote- chnol, 7,301–306 (1996).

    Article  CAS  Google Scholar 

  • Yabuuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y, Ezaki, T., and Yamamoto, H., Proposals ofSphingomonas paucimobilis gen. nov. and comb. nov.,Sphingomonas parapaucimobilis sp. nov.,Sphingomonas yanoikuyae sp. nov,Sphingomonas adhaesiva sp. nov.,Sphingomonas capsulata comb, nov., and two genospecies of the genusSphingomonas.Microbiol. Immunol., 34, 99–119 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan-Soo Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burenjargal, M., Lee, YS., Yoo, JM. et al. Endogenous sphingolipid metabolites related to the growth inSphingomonas chungbukensis . Arch Pharm Res 30, 317–322 (2007). https://doi.org/10.1007/BF02977612

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977612

Keywords

Navigation