Skip to main content
Log in

Subacute nicotine exposure in cultured cerebellar cells increased the release and uptake of glutamate

  • Research Articles
  • Pharmacology, Toxicology & Pharmaceutics
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Cerebellar granule and glial cells prepared from 7 day-old rat pups were used to investigate the effects of sub-acute nicotine exposure on the glutamatergic nervous system. These cells were exposed to nicotine in various concentrations for 2 to 10 daysin situ. Nicotine-exposure did not result in any changes in cerebellar granule and glial cell viability at concentrations of up to 500 μM. In cerebellar granule cells, the basal extracellular levels of glutamate, aspartate and glycine were enhanced in the nicotine-exposed granule cells. In addition, the responses of N-methyl-D-aspartate (NMDA)-induced glutamate release were enhanced at low NMDA concentrations in the nicotine-exposed granule cells. However, this decreased at higher NMDA concentrations. The glutaminase activity was increased after nicotine exposure. In cerebellar glial cells, glutamate uptake in the nicotine-exposed glial cells were either increased at low nicotine, exposure levels or decreased at higher levels. The inhibition of glutamate uptake by L-trans-pyrollidine-2,4-dicarboxylic acid (PDC) was lower in glial cells exposed to 50μM nicotine. Glutamine synthetase activity was lower in glial cells exposed to 100 or 500 μM of nicotine. These results indicate that the properties of cerebellar granule and glial cells may alter after subacute nicotine exposure. Furthermore, they suggest that nicotine exposure during development may modulate glutamatergic nervous activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, N., Harata, N. and Tateishi, N., Modulatory action of cholinergic drugs on NMDA response in dissociated rat nucleus basalis of Meynert neurons.Neurosci. Lett., 130, 243–247 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Akaike, A., Tamura, Y., Yokota, T., Shimohama, S. and Kimura, J., Nicotine-induced protection of cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity.Brain Res., 644, 181–187 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Alavez, S., Gutierrez, L. and Moran, J., Characterization of the activation of glutaminase induced by N-methyl-D-aspartate and potassium in cerebellar granule cells.J. Neurosci. Res., 45, 637–646 (1997).

    Article  Google Scholar 

  • Aramakis, V. B. and Metherate, R., Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex.J. Neurosci., 18, 8485–8494 (1998).

    PubMed  CAS  Google Scholar 

  • Berger, F., Gage, F and Vijayaraghavan, S., Nicotinic receptor-induced apoptotic cell death of hippocampal progentor cells.J. Neurosci., 18, 6871–6881 (1998).

    PubMed  CAS  Google Scholar 

  • Birtwistle, J. and Hall, K., Does nicotine have beneficial effects in the treatment of certain diseases?Br. J. Nurs., 5, 1195–1202 (1997).

    Google Scholar 

  • Borlongan, C. V., Shytle, R. D., Ross, S. D., Shimizu, T., Freeman, T. B., Cahill, D. W. and Sanberg, P. R., (−)-Nicotine protects against systemic kainic acid-induced excitotoxic effects.Exp. Neurology, 136, 261–265 (1995).

    Article  CAS  Google Scholar 

  • Caldani, M., Rolland, B., Fages, C. and Tardy, M., Glutamine synthetase activity during mouse brain development.Experientia, 38, 1199–1202 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Collingridge, G. L. and Lester, R. A. J., Excitatory amino acid receptors in the vertebrate central nervous system.Pharmacol. Rev., 41, 143–210 (1989).

    PubMed  CAS  Google Scholar 

  • Derouiche, A. and Rauen, T., Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearence.J. Neurosci. Res., 42, 131–143 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Didier, M., Berman, S. A., Lindstrom, J. and Bursztajn, S., Characterization of nicotinic acetylcholine receptors expressed in primary cultures of cerebellar granule cells.Mol. Brain Res., 30, 17–28 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Fairman, W. A., Vandenverg, R. J., Arriza, J. L., Kavanaugh, M. P. and Amara, S. G., An excitatory amino-acid transporter with properties of a ligand-gated chloride channel.Nature, 375, 599–603 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y. K., Schmid, M. J., Anderson, T. M. and Lau, Y., Effects of nicotine withdrawal on central dopaminergic systems.Pharmacol. Biochem. Behav., 53, 635–640 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Munoz, M., Patino, P., Young, S. J. and Groves, P. M., Effects of nicotine on dopaminergic nigrostriatal axons requires stimulation of presynaptic glutamatergic receptors.J. Pharmacol. Exp. Ther., 277, 1685–1693 (1996).

    PubMed  CAS  Google Scholar 

  • Gattu, M., Pauly, J. R., Boss, K. L., Summers, J. B. and Buccafusco, J. J., Cognitive impairment in spontaneously hypertensive rats: role of central nicotinic receptors. I.Brain Res., 771, 89–103 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Grunewald, M. and Kanner, B., Conformational changes monitored on the glutamate transporter GLT-1 indicate the existence of two neurotransmitter-bound states.J. Biol. Chem., 270, 17017–17024 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Kim, W. K. and Pae, Y. S., Cellular mechanism, of nicotine-mediated intracelluar calcium homeostasis in primary culture of mouse cerebellar granule cells.Korean J. Pharmacol., 32, 13–21 (1996).

    CAS  Google Scholar 

  • Kondo, K., Hashimoto, H., Kitanaka, J., Sawaka, M., Suzumura, A., Marunouchi, T. and Baba, A., Expression of glutamate transporters in cultured glial cells.Neurosci. Lett., 188, 140–142 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, A. D. and Sahakian, B. J., Alzheimer disease, attention and the cholinergic system.Alzheimer. Dis. Assoc. Disord., 9, 43–49 (1995).

    Article  PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., Protein measurement with the folin phenol reagent.J. Biol. Chem., 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  • McCaslin, P. P. and Morgan, W. W., Cultured cerebellar cells as as in vitro model of excitatory amino acid receptor function.Brain Res., 417, 380–384 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Meldrum, B. and Garthwaite, J., Excitatory amino acid neurotoxicity and neurodegenerative disease.Trends in Pharmacol. Sci., 11, 379–387 (1990).

    Article  CAS  Google Scholar 

  • Mennerick, S. and Zorumski, C. F., Glial contributions to excitatory neurotransmission in cultured hippocampal cells.Nature, 368, 59–62 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Miulli, D. E., Norwell, D. Y. and Schwartz, F. N., Plasma concentrations of glutamate and its metabolites in patients with Alzheimer’s disease.J. Am. Osteopath. Assoc., 93, 670–676 (1993).

    PubMed  CAS  Google Scholar 

  • Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays.J. Immunol. Meth., 65, 55–63 (1983).

    Article  CAS  Google Scholar 

  • Oster, Y. and Schramm, M., Down-regulation of NMDA receptor activity by NMDA.Neurosci. Lett., 163, 85–88 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Nicholis, D. and Attwell, D., The release and uptake of excitatory amino acids.Trends in Pharmacol. Sci., 11, 462–468 (1990).

    Article  Google Scholar 

  • Perez De La Mora, M., Mendez-Franco, J., Salceda, R., Aguirre, J. A. and Fuxe, K., Neurochemical effects of nicotine on glutamate and GABA mechanisms in the rat brain.Acta. Physiol. Scand., 141, 241–250 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Resink, A., Villa, M., Benke, D., Hidaka, H., Mohler, H. and Balazs, R., Characterization of agonist-induced down-regulation of NMDA receptors in cerebellar granule cell cultures.J. Neurochem., 66, 369–377 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Schmid, R., Hong, J. S., Meek, J. and Costa, E., The effects of kainic acid on the hippocampal content of putative neurotransmitter amino acids.Brain Res., 200, 355–362 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Shoup, R. E., Allison, L. A. and Mayer, G. S., O-phthalaldehyde derivatives of amines for high-speed liquid chromatography/electrochemistry.Analytical Chem., 56, 1089–1096 (1984).

    Article  Google Scholar 

  • Toth, E., Vizi, E. S. and Lajtha, A., Effect of nicotine on levels of extracellular amino acids in regions of the rat brain in vivo.Neuropharmacology, 32, 827–832 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Vidal, C., Nicotinic receptors in the brain. Molecular biology, function and therapeutics.Mol. Chem. Neuropathol., 28, 3–11 (1997).

    Article  Google Scholar 

  • Zhang, X., Gong, Z. and Nordberg, A., Effects of chronic treatment with (+)-and (−)-nicotine on nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors in rat brain.Brain. Res., 644, 32–39 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Koo Lim Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, D.K., Park, S.H. & Choi, W.J. Subacute nicotine exposure in cultured cerebellar cells increased the release and uptake of glutamate. Arch Pharm Res 23, 488–494 (2000). https://doi.org/10.1007/BF02976578

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02976578

Key words

Navigation