Skip to main content
Log in

Effects of placing micro-implants of melatonin in striatum on oxidative stress and neuronal damage mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors

  • Research Articles
  • Pharmacology & Toxicology
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Overstimulation of both kainate (KA) and N-methyl-D-aspartate (NMDA) receptors has been reported to induce excitatoxicity which can be characterized by neuronal damage and formation of reactive oxygen free radicals. Neuroprotective effect of melatonin against KA-induced excitotoxicity have been documentedin vitro andin vivo. It is, however, not clear whether melatonin is also neuroportective against excitotoxicity mediated by NMDA receptors. In the present work, we tested thein vivo protective effects of striatally infused melatonin against the oxidative stress and neuronal damage induced by the injection of KA and NMDA receptors into the rat striatum. Melatonin implants consisting of 22-gauge stainless-steels cannule with melatonin fused inside the tip were placed bilaterally in the rat brain one week prior to intrastriatal injection of glutamate receptor subtype agonists. Melatonin showed protective effects against the elevation of lipid peroxidation induced by either KA or NMDA and recovered Cu, Zn-superoxide dismutase activities reduced by both KA and NMDA into the control level. Melatonin also clearly blocked both KA- and NMDA-receptor mediated neuronal damage assessed by the determination of choline acetyltransferase activity in striatal homogenages and by microscopic observation of rat brain section stained with cresyl violet. The protective effects of melatonin are comparable to those of DNQX and MK801 which are the KA- and NMDA-receptor antagonist, respectively. It is suggested that melatonin could protect against striatal oxidative damages mediated by glutamate receptors, both non-NMDA and NMDA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Ackerman, E. J. and Dennis, E. A., Mammalian calcium independent phospholipase A2.Biochem., Biophys. Acta, 1259, 125–136 (1995).

    Google Scholar 

  • Aizenman, E., Hartnett, K. and Reynolds, I., Oxigen free radicals regulate NMDA receptor function via a redox modulatory site.Neuron, 5, 841–846 (1990)

    Article  PubMed  CAS  Google Scholar 

  • Albin, R. L., Makowiec, R. L., Hollingsworth, Z. R., Duro, L. S., Penney, J. B. and Young, A. B., Excitotory amino acid binding sitesin the basal ganglia or the rat: a quantitative autoradiographic study.Neuroscience, 46, 35–48 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Antolín, I., Rodríguez, C., Sáinz, R. M., Mayo, J. C., Uría, H., Kotler, M. L., Rodríguez-Colunga, M. J., Tolivia, D. and Menéndez-Peláez, A., Neuorhormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes.FASEB J., 10, 882–890 (1996).

    PubMed  Google Scholar 

  • Arendt, J., Melatonin.Clin. Endocrinol., 29, 205–229 (1988)

    Article  CAS  Google Scholar 

  • Avraham, K. B., Schickler, M., Sapoznikov, D., Yarom, R. and Groner, Y., Down’s syndrome: abnormal neuromuscular junction in tongue of transgenic mice with elevated levels of human Cu-Zn-superoxide dismutase.Cell, 54, 823–829 (1988)

    Article  PubMed  CAS  Google Scholar 

  • Bar Peled, O., Korkotian, E., Segal, M. and Groner, Y., Constitutive overexpression of Cu/Zn superoxide dismutase exacerbates kainic acid-induced apoptosis of transgenic-Cu/Zn usperoxide dismutase neurons.Proc. Natl. Acad. Sci. USA, 93, 8530–8535 (1996)

    Article  Google Scholar 

  • Barlow-Walden, L. R., Reiter, R. J. and Pablos, M. I., Melatonin stimulates brain glutathion peroixdase activity.Neurochem. Int., 26, 497–502 (1995)

    Article  PubMed  CAS  Google Scholar 

  • Bondy, S. C. and Lee, D. K., Oxidative stress induced by glutamate receptor agonists,Brain Res., 610, 229–233 (1993)

    Article  PubMed  CAS  Google Scholar 

  • Cassone, V. M., Chesworth, M. J. and Prosser, R. A., Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nucleus.Physiol. Behav., 36, 111–121 (1986)

    Article  Google Scholar 

  • Choi, D. W., Glutamate neurotoxicity and disease of the nervous system.Neuron, 1, 623–634 (1988)

    Article  PubMed  CAS  Google Scholar 

  • Choi, D. W., Maulucci-Gedde, M. A. and Kriegstein, A. R., Glutamate neurotoxicity in cortical cell culture.J. Neurosci., 7, 357–368 (1987)

    PubMed  CAS  Google Scholar 

  • Chow, H. S., Lynch III, J. J., Rose, K. and Choi, D. W., Trolox attenuates cortical neuronal injury induced by iron, ultraviolet light, glucose deprivation, or AMPA.Brain Res., 639, 102–108 (1994)

    Article  PubMed  CAS  Google Scholar 

  • Clifford, D. B., Xorumski, C. F. and Olney, J. W., Ketamine and MK-801 prevent degeneration of thalamic neurons induced by focal cortical seizures.Exp. Neurol., 105, 272–279 (1989)

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J. T. and Puttfarcken, P., Oxidative stress, glutamate, and neurodegenerative diseases.Science, 262, 689–695 (1993)

    Article  PubMed  CAS  Google Scholar 

  • Dykens, J. A., Stern, A. and Trenker, E., Mechanism of Kainate toxicity to cerebellar neurons in vitro is analogus to reperfusion tissue injury.J. Neurochem., 49, 1222–1228 (1987)

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, R., Radiochemical micro assay for the determination of choline acetyltransferase and acetylcholinesterase activities.Biochem. J., 115, 465–472 (1969)

    PubMed  CAS  Google Scholar 

  • Foster, A. C., Gill, R. and Woodruff, G. N., Neuroprotective effects of MK-801in vivo: selectivity and evidence of delayed degeneration mediated by NMDA receptor activation.J. Neurosci., 8, 4745–4754 (1988)

    PubMed  CAS  Google Scholar 

  • Freeman, B. A., Young, S. L. and Crapo, J. D., Liposomemediated augmentation of superoxide dismutase in endothelial cells prevents oxygen injury.J. Biol. Chem., 258, 12534–12542 (1983)

    PubMed  CAS  Google Scholar 

  • Giusti, P., Gusella, M. and Liparetti, M., Melatonin protects promary cultures of cerebellar granule neurons from kainate but not from N-methly-D-aspartate excitatoxicity.Exp. Neurol., 131, 39–46 (1995)

    Article  PubMed  CAS  Google Scholar 

  • Giusti, P., Lipartit, M., Franceschini, D., Schilavo, N., Floreani, M. and Manev, H., Neuroprotection by melatonin from kainate-induced excitotoxicity in rats.FASEB J., 10, 891–896 (1996a)

    PubMed  CAS  Google Scholar 

  • Giusti, P., Franceschini, D., Kharlamov, A. and Manev, H., Protective effect of melatonin against hippocampal DNA damage induced by intraperitoneal administration of kainate to rats.Neurosci. 73, 634–636 (1996b)

    Google Scholar 

  • Hollman, M. and Heinmann, S., Cloned glutamate receptors.Annu. Rev. Neurosci., 17, 31–108 (1994)

    Article  Google Scholar 

  • Hugon, J., ALS therapy: targets for the future.Neurology, 47, S251–254 (1996)

    PubMed  CAS  Google Scholar 

  • Jhamandas, K. H., Boegman, R. J. and Beninger, R. I., Quinolinic acid induced brain neurotransmitter deficits: modulation by endogenous excitotoxin antagonists.Can. J. Physiol. Pharmacol. 72, 1473–1482 (1994)

    PubMed  CAS  Google Scholar 

  • Kondo, T., Reaume, A. G., Huang, T. T., Carlson, E., Murakami, K., Chen, S. F., Hoffman, E. K., Scott, R. W., Epstein, C. J. and Chan, P. H., Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia.,J. Neuorsci., 17, 4180–4189 (1997)

    CAS  Google Scholar 

  • Lincoln, G. A. and Maeda, K.-I., Reproductive effects of placing micro-implants of melatonin in the mediobasal hypothalamus and preoptic area in rams.J. Endocrinol., 132, 201–215 (1992a)

    PubMed  CAS  Google Scholar 

  • Lincoln, G. A. and Maeda, K.-I., Effects of placing micro-implants of melatonin in the mediobasal hypothalamus and preoptic area on the secretion of prolactin and β-endorphin in rams.J. Endocrinol., 134, 437–438 (1992b)

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., Protein measurement with the Folin reagent.J. Biol. Chem., 193, 265–275 (1951)

    PubMed  CAS  Google Scholar 

  • Menendez-Pelaez, A., Poeggeler, B., Reiter, R. J., Barlow-Walden, L. R., Pablos, M. I. and Tan, D. X., Nuclear localization of melatonin in different mammalian tissues. Immunocytochemical and radioimmunoassay evidence.J. Cell. Biochem., 53, 372–382 (1993)

    Article  Google Scholar 

  • Manov, H., Uz, T. and Joo, J. Y., Increased brain damage after stroke or excotatoxic seizures in melatonin-deficient rats.FASEB J. 10, 1546–1551 (1996)

    Google Scholar 

  • Massieu, L. and Tapia, R., NBQX protects against both AMPA and KA-induced lesion in rat striatumin vivo.Neuroscience, 59, 931–938 (1994)

    Article  PubMed  CAS  Google Scholar 

  • McCord, J. M. and Fridovich, I., Superoxide dismutase,J. Biol. Chem., 244, 6049–6055 (1969)

    PubMed  CAS  Google Scholar 

  • Mcgeorge, A. J. and Faull, R. L. M., The organization of the projection from the cerebral cortex to the striatum in the rat.Neuroscience, 29, 503–537 (1989)

    Article  PubMed  CAS  Google Scholar 

  • Melchiorri, D., Reiter, R. J., Sewery E., Chen, L. and Nistico, G., Melatonin reduces KA-induced lipid peroxidation in homogenates of different brain region.FASEB J., 9, 1205–1210 (1995)

    PubMed  CAS  Google Scholar 

  • Nakahishi, S., Molecular diversity of glutamate receptors and implications for brain function.Science, 258, 597–603 (1992)

    Article  Google Scholar 

  • Pellegrini-Giampiatro, D. E., Cherici, G., Aleciani, M. and Caria, V. and Moroni, F., Excitatory amino acid release and free radical formation may cooperation in the genesis of ischemia-induced neuronal damage.J. Neurosci., 10, 1035–1041 (1990)

    Google Scholar 

  • Reiter, R. J., Oxidative processes and antioxidant drfence mechanism in the aging brain.FASEB J., 9, 526–533 (1993)

    Google Scholar 

  • Reiter, R. J., Functional aspects of the pineal hormone melatonin in combating cell and tissue damage induced by free radical.Eur. J. Endocrinol., 134, 412–420 (1996)

    PubMed  CAS  Google Scholar 

  • Reiter, R. J. and Tang, L., Pharmacological action of melatonin in oxygen radical pathophysiology.Life Science, 60, 2255–2271 (1997)

    Article  CAS  Google Scholar 

  • Schwarts, P. J. and Coyle, J. T., Effects of overexpression of the cytoplasmic copper-zinc superoxide dismutase on the survival of neuronsin vitro.Synapse, 29, 206–212 (1998)

    Article  Google Scholar 

  • Schwarts, P. J., Reaume, A. and Coyle, J. T., Effects of over- and under-expression of Cu, Zn-superoxide dismutases on the toxicity ov glutamate analogs in transgenic mouse striatum.Brain Res., 789, 32–39 (1998)

    Article  Google Scholar 

  • Simon, R. P., Swan, J. H., Griffiths, T. and Meldrum, B. S., Blockade of N-mdthyl-D-aspartate receptors may protect against ischemic damage in the brain.Science, 226, 850–852 (1984)

    Article  PubMed  CAS  Google Scholar 

  • Tan, D. X., Reiter, R. J., Chen, L. D., Poeggeler, B., Manchester, L. C. and Barlow-Walden, S. R., Both physiological and pharmacological levels of melatonin reduced DNA adducts formation induced by the chemical carcinogen safrole.Carcinogenesis, 15, 215–218 (1994)

    Article  PubMed  CAS  Google Scholar 

  • Triggs, J. W. and Willmore, L. J.,In vivo lipid peroxidation in rat brain following intracortical Fe++ injection.J. Neurochem., 42, 976–980 (1984)

    Article  PubMed  CAS  Google Scholar 

  • Weiloch, T., Hypoglycemia induced neuronal damage prevented by an N-methyl-D-aspartate antagonist.Science, 230, 681–683 (1985)

    Article  Google Scholar 

  • Wullner, U., Standaert, D. G., Testa, C. M., Landwehrmeyer, G. B., Catania, M. V., Penney Jr., J. B. and Young, A. B., glutamate receptor expression in rat striatum: effect of deafferentiation.Brain Res., 647, 209–219 (1994)

    Article  PubMed  CAS  Google Scholar 

  • Zelman, F. P., Thienhaus, O. J. and Bosmann, H. B., Superoxide dismutase activity in Alzheimer’s disease: possible mechanism for paired helical filament formation.Brain Res., 476, 160–162 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HJ., Kwon, J.S. Effects of placing micro-implants of melatonin in striatum on oxidative stress and neuronal damage mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Arch Pharm Res 22, 35–43 (1999). https://doi.org/10.1007/BF02976433

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02976433

Key words

Navigation