Skip to main content
Log in

Developmental patterns of Galβ1,3(4)GlcNAc α2,3-sialyltransferase (ST3Gal III) expression in the mouse:In situ hybridization using DIG-labeled RNA probes

  • Research Articles
  • Biochemistry & Cell Biology
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Sialic acids are key determinants for biological processes, such as cell-cell interaction and differentiation. sialyltransferases contribute to the diversity in carbohydrate structure through their attachment of sialic acid in various terminal positions on glycolipid and glycoprotein (N-linked and O-linked) carbohydrate groups. Galß 1,3(4)GlcNAc α2,3-sialyltransferase (ST3Gal III) is involved in the biosynthesis of sLex and sLea known as selectin ligands and tumor-associated carbohydrate structures. The appearance and differential distribution of ST3Gal III mRNA during mice embryogenesis [embryonic (E) days; E9, E11, E13, E15] were investigated byin situ hybridization with digoxigenin-labeled RNA probes coupled with alkaline phosphatase detection. On E9, all tissues were positive for ST3Gal III mRNA expression, whereas ST3Gal III mRNA on E11 was not detected throughout all tissues. On E13, ST3Gal III mRNA was expressed in different manner in various tissues. In this stage, ST3Gal III mRNA was positive only in the liver, pancreas and bladder. On E15, specific signal for ST3Gall III was detected in the liver, lung and forebrain. These results indicate that ST3GAl III is differently expressed at developmental stages of mice embryo, and this may be importantly related with regulation of organogenesis in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Bird, J. M. and Kimber, S. J., Oligosaccharides containing fucose linked α(1–3) and α(1–4) to N-acetylglucosamine cause decompaction of mouse morulae.Dev. Biol., 104, 449–460 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Brandely, B. K., Swiedler, S. J. and Robbinson, P. W., Carbohydrate ligands of the LEC cell adhesion molecules.Cell, 63, 861–863 (1990).

    Article  Google Scholar 

  • Choo, Y. K., Chiba, K., Tai, T., Ogiso, M. and Hoshi, M., Differential distribution of gangliosides in adult rat ovary during the oestrous cycle.Glycobiology, 5, 299–309 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Fenderson, B. a., Zehavi, U. and Hakomori, S., A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective.J. Exp. Med., 160, 1591–1596 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, S. F., Developmental biology. Sunderland, MA, Sinauer. (1988).

    Google Scholar 

  • Kaufman, M. H.,The atlas of mouse development., Academic Press, San Diego, CA, 1992.

    Google Scholar 

  • Kono, M., Ohyama, Y., Lee, Y.-C., Hamamoto, T., Kojima, N. and Tsuji, S., Mouse β-galactoside α2,3-sialyltransferases: comparison ofin vitro substrate specificities and tissue specific expression.Glycobiology, 7, 469–479 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kurosawa, N., Yoshida, Y., Kojima, N. and Tsuji, S., Polysialic acid synthase (ST8Sia II/STX) mRNA expression in the developing mouse central nervous system.J. Neurochem, 69, 494–503 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kono, M., Yoshida, Y., Kojima, N. and Tsuji, S., Molecular cloning and expression of a fifth type of α2,8-sialyltransferase (ST8Sia V). Its substrate specificity is similar to that of SAT-V/III, which synthesize GD1c, GT1a, GQ1b and GT3.J. Biol. Chem., 271, 29366–29371 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Lawson, S. N. and Biscoe, T. S., Development of mouse dorsal root ganglia: an autoradiographic and quantitative study.J. Neurocytol., 8, 265–272 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.-C., β-galactoside α2,3-sialyltransferase: Characterization of the cloned two types of Galβ1,3GalNAc α2,3-sialyltransferase.RIKEN Review, 8, 17–19 (1995).

    CAS  Google Scholar 

  • Lee, Y.-C., Kojima, N., Wada, E., Kurosawa, N., Nakaoka, T., Hamamoto, T. and Tsuji, S., Cloning and expression of cDNA for a new type of Galβ1,3GalNAc α2,3-sialyltransferase.J. Biol. Chem., 269, 10028–10033 (1994).

    PubMed  CAS  Google Scholar 

  • Lee, Y.-C., Kurosawa, N., Hamamoto, T., Nakaoka, T. and Tsuji, S., Molecular cloning and expression of Galβ1,3GalNAc α2,3-sialyltransferase from mouse brain.Eur J. Biochem., 216, 377–385 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, J., Fukuda, M. N., Hirabayashi, Y., Kanamori, A., Sasaki, K., Nishi, T. and Fukuda, M., Expression cloning of a human GT3 synthase. GD3 and GT3 are synthesized by a single enzyme.J. Biol. Chem., 271, 3684–3691 (1997).

    Google Scholar 

  • Noiiri, H., Kitagawa, S., Nakamura, M., Kirito, K., Enomoto, Y. and Saito, M., Neolacto-series gangliosides induce granulocytic differentiation of human promyelocytic leukemia cell line HL-60.J. Biol. Chem., 263, 7443–7449 (1988).

    Google Scholar 

  • Nojiri, H., Takaku, F., Terui, Y., Miura, Y. and Saito, M., Ganglioside GM3: an acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937.Proc. Natl. Acad. Sci. U.S.A., 83, 782–786 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, J., Inoue, H. and Koide, S., α-2,3-Sialyltransferase type 3N and α-1,3-fucosyltransferase type VII are related to sialyl LewisX synthesis and patient survival from lung carcinoma.Cancer, 79, 1678–1685 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Paulson, J. C., Carbohydrate ligands of leukocyte adhesion moleculesand their therapeutic potential.Prog. Brain Res., 101, 179–84 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Paulson, J. C. and Colley, K. J., Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation.J. Biol. Chem., 264, 17615–17618 (1989).

    PubMed  CAS  Google Scholar 

  • Paulson, J. C., Weinstein, J. and Schauer, A., Tissue-specific expression of sialyltransferases.J. Biol. Chem., 264, 10931–10934 (1989).

    PubMed  CAS  Google Scholar 

  • Rutishauser, U., Acheson, A., Hall, A. K., Mann, D. M. and Sunshine, J., The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions.Science, 240, 53–57 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Sariola, H., Aufderheide, E., Bernhard, H., Henke-Fahle, S., Dippold, W. and Ekblom, P., Antibodies to cell surface ganglioside GD3 perturb inductive epithelial-mesenchymal interactions.Cell, 54, 235–245 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, K., Watanabe, E., Kawashima, K., Sekine, S., Dohi, T., Oshima, M., Hanai, N., Nishi, T. and Hasegawa, M., Expression cloning of a novel Galβ (1–3/1–4) GlcNAc α2,3-sialyltransferase using lectin resistance selection.J. Biol. Chem., 268, 22782–22787 (1993).

    PubMed  CAS  Google Scholar 

  • Theiler, K.,The house mouse. Atlas of embryonic development. Springer-Verlag, New York, 1989.

    Google Scholar 

  • Tsuji, S., Arita, M. and Nagai, Y., GQ1b, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblastoma cell lines.J. Biochem. Tokyo, 94, 303–306 (1983).

    PubMed  CAS  Google Scholar 

  • Tsuji, S., Molecular cloning and functional analysis of sialyltransferases.J. Biochem. Tokyo, 120, 1–13 (1996).

    PubMed  CAS  Google Scholar 

  • Varki, A., Selectins and other mammalian sialic acid-binding lectins.Curr. Opin. Cell Biol., 4, 257–266 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Wen, D. X., Livingston, B. D., Medzihradszky, K. F., Kelm, S., Burlingame, A. L. and Paulson, J. C., Primary structure of Gal beta 1,3(4) GlcNAc 2,3sialyltransferase determined by mass spectrometry sequence analysis and molecular cloning. Evidence for a protein motif in the sialyltransferase gene family.J. Biol. Chem., 267, 21011–21019 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Kug Choo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, M.Y., Lee, Y.C., Kim, K.S. et al. Developmental patterns of Galβ1,3(4)GlcNAc α2,3-sialyltransferase (ST3Gal III) expression in the mouse:In situ hybridization using DIG-labeled RNA probes. Arch Pharm Res 22, 243–248 (1999). https://doi.org/10.1007/BF02976357

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02976357

Key words

Navigation