Skip to main content

Advertisement

Log in

Antibody imaging in the evaluation of cardiovascular diseases

  • Reviews
  • Published:
Journal of Nuclear Cardiology Aims and scope

An Erratum to this article was published on 01 November 1994

Abstract

Antimyosin antibody was originally developed for in vivo detection of acute myocardial infarction. However, its utility has expanded to include diagnosis of various cardiovascular diseases in which myocyte necrosis constitutes an obligatory component of the disease. Thus antimyosin has also been used clinically for noninvasive diagnosis of acute myocarditis, heart transplant rejection, drug-induced cardiotoxicity, and other cardiomyopathies. This firstgeneration monoclonal antibody, antimyosin, has opened the way for the second-generation monoclonal antibodies such as antifibrin and antiplatelet for in vivo diagnostic use in the detection of deep venous thrombosis and pulmonary embolism and antiatherosclerotic lesion-specific antibody for diagnosis of metabolically active lesions. Whether the third generation of antibodies will include ultrasmall antigen-binding units or negative chargemodified antibodies must await future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cuatrecasas P. Protein purification by affinity chromatography: derivation of agarose and polyamine beads. J Biol Chem 1970; 245: 3059–65.

    PubMed  CAS  Google Scholar 

  2. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495–7.

    Article  PubMed  Google Scholar 

  3. Khaw BA, Beller GA, Haber E, Smith TW. Localization of cardiac myosin-specific antibody in myocardial infarction. J Clin Invest 1976; 58: 439–46.

    Article  PubMed  CAS  Google Scholar 

  4. Khaw BA, Scott J, Fallon JT, Haber E, Homey C. Myocardial injury: quantitation by cell sorting initiated with anti-myosin fluorescent spheres. Science 1982; 217: 1050–3.

    Article  PubMed  CAS  Google Scholar 

  5. Khaw BA, Gold HK, Leinbach RC, et al. Early imaging of experimental myocardial infarction by intracoronary administration of131I-labeled anticardiac myosin (Fab′)2 fragments. Circulation 1978; 58: 1137–42.

    PubMed  CAS  Google Scholar 

  6. Porter RR. The hydrolysis of rabbit γ-globulin and antibodies with crystalline papain. Biochem J 1959; 73: 199–26.

    Google Scholar 

  7. Hnatowich DJ, Fritz B, Virzi F, Mardirossian G, Rusckowski M. Improved tumor localization with strept (avid) and labeled biotin as a substitute for antibody. Nucl Med Biol 1993; 20: 189–95.

    Article  PubMed  CAS  Google Scholar 

  8. Khaw BA, Strauss HW, Cahill SL, Soule HR, Edgington TS, Cooney JM. Sequential imaging of indium-111 labeled monoclonal antibody in human mammary tumors hosted in nude mice. J Nucl Med 1984; 25: 592–603.

    PubMed  CAS  Google Scholar 

  9. Khaw BA, Strauss HW, Narula J. Magic bullets: from muskets to smart bombs. J Nucl Med 1993; 34: 2264–8.

    PubMed  CAS  Google Scholar 

  10. Fischman AJ. When magic bullets ricochet. J Nucl Med 1990; 31: 32–3.

    PubMed  CAS  Google Scholar 

  11. Khaw BA, Mattis JA, Melincoff G, Strauss HW, Gold HK, Haber E. Monoclonal antibody to cardiac myosin: scintigraphic imaging of experimental myocardial infarction. Hybridoma 1984; 3: 11–23.

    Article  PubMed  CAS  Google Scholar 

  12. Khaw BA, Strauss HW, Pohost GM, Fallon JT, Katus HA, Haber E. The relationship of immediate and delayed thallium-201 distribution to localization of I-125-antimyosin antibody in acute experimental myocardial infarction. Am J Cardiol 1983; 51: 1428–32.

    Article  PubMed  CAS  Google Scholar 

  13. Khaw BA, Mousa S. Comparative assessment of experimental myocardial infarction with Tc-99m hexakis-t-butyl-isonitrile (sestamibi), In-111 antimyosin and Tl-201. Nucl Med Commun 1991; 12: 853–63.

    Article  PubMed  CAS  Google Scholar 

  14. Khaw BA, Fallon JT, Beller GA, Haber E. Specificity of localization of myosin specific antibody fragments in experimental myocardial infarction: histologic, histochemical, autoradiographic and scintigraphic studies. Circulation 1979; 60: 1527–31.

    PubMed  CAS  Google Scholar 

  15. Khaw BA, Strauss HW, Moore R, et al. Myocardial damage delineated by In-111 antimyosin Fab and Tc-99m-pyrophosphate. J Nucl Med 1987; 28: 76–82.

    PubMed  CAS  Google Scholar 

  16. Narula J, Petrov A, Pak C, Khaw BA. Hyperacute visualization of myocardial infarction with Tc-99m glucarate: comparison with Tl-210, in-111-antimyosin. J Am Coll Cardiol 1994; 23: 317A(abstract).

    Google Scholar 

  17. Khaw BA, Gold HK, Yasuda T, et al. Scintigraphic quantification of myocardial necrosis in patients after intravenous injection of myosin-specific antibody. Circulation 1986; 74: 501–8.

    PubMed  CAS  Google Scholar 

  18. Khaw BA, Yasuda T, Gold HK, et al. Acute myocardial infarct imaging with indium-111 labeled monoclonal antimyosin Fab fragments. J Nucl Med 1987; 28: 1671–8.

    PubMed  CAS  Google Scholar 

  19. Braat SH, de Zwaan C, Teule J, Heidendal G, Wellen HJJ. Value of indium-111 monoclonal antimyosin antibody for imaging in acute myocardial infarction. Am J Cardiol 1987; 60: 725–6.

    Article  PubMed  CAS  Google Scholar 

  20. Volpini M, Guibbini R, Gei P, et al. Diagnosis of acute myocardial infarction by indium-111 antimyosin antibody and correlation with traditional techniques for the evaluation of extent and localization. Am J Cardiol 1989; 63: 7–13.

    Article  PubMed  CAS  Google Scholar 

  21. Antunes ML, Seldin DW, Wall RM, Johnson LL. Measurement of acute Q-wave myocardial infarct size with SPECT imaging of indium-111-antimyosin. Am J Cardiol 1989; 63: 777–83.

    Article  PubMed  CAS  Google Scholar 

  22. Johnson LL, Seldin DW, Becker LC, et al. Antimyosin imaging in acute transmural myocardial infarction: results of a multicenter clinical trial. J Am Coll Cardiol 1989; 13: 27–35.

    PubMed  CAS  Google Scholar 

  23. Berger H, Lahiri A, Leppo J, et al. Antimyosin imaging in patients with ischemic chest pain: initial results of phase III multicenter trial [Abstract]. J Nucl Med 1988; 28: 805.

    Google Scholar 

  24. Jain D, Lahiri A, Raftery E. Immunoscintigraphy for detecting acute myocardial infarction without electrocardiographic changes. Br Med J 1990; 300: 151–3.

    CAS  Google Scholar 

  25. Antunes ML, Johnson LL, Seldin DW, et al. Diagnosis of right ventricular infarction by dual isotope thallium-201, and indium-111-monoclonal antimyosin SPECT imaging. Am J Cardiol 1992; 70: 426–31.

    Article  PubMed  CAS  Google Scholar 

  26. van Vlies B, van Royen ED, Visser CA, et al. Frequency of myocardial indium-111 antimyosin uptake after uncomplicated coronary artery bypass surgery. Am J Cardiol 1990; 66: 1191–5.

    Article  PubMed  Google Scholar 

  27. Tamaki N, Yamada T, Matsumori A, et al. Indium-111 antimyosin antibody imaging for detecting different stages of myocardial infarction: comparison with technetium-99m-pyrophosphate imaging. J Nucl Med 1990; 31: 136–42.

    PubMed  CAS  Google Scholar 

  28. Bhattacharya S, Liu XJ, Senior R, Jain D, Leppo JA, Lahiri A. 111-Indium antimyosin antibody uptake is related to the age of myocardial infarction. Am Heart J 1991; 122: 1583–7.

    Article  PubMed  CAS  Google Scholar 

  29. Yamada T, Tamaki N, Morishima S, Konishi J, Uoshida A, Matsumori A. Time course of myocardial infarction evaluated by indium-111-antimyosin monoclonal antibody scintigraphy: clinical implications and prognostic value. J Nucl Med 1992; 33: 1501–8.

    PubMed  CAS  Google Scholar 

  30. Isobe M, Haber E, Khaw BA. Early detection of rejection and assessment of cyclosporine therapy by indium-111 antimyosin imaging in mouse heart allografts. Circulation 1991; 84: 1246–55.

    PubMed  CAS  Google Scholar 

  31. Addonizio LJ, Michler RE, Marboe C, et al. Imaging of cardiac allograft rejection in dogs using indium-111 monoclonal antimyosin Fab. J Am Coll Cardiol 1987; 9: 555–64.

    PubMed  CAS  Google Scholar 

  32. Frist W, Yasuda T, Segall G, et al. Noninvasive detection of human cardiac transplant rejection with In-111 antimyosin (Fab) imaging. Circulation 1987; 76(suppl): 81–5.

    Google Scholar 

  33. Ballester M, Carrió I, Abadal ML, Obrador D, Bernà L, Caralps-Riera JM. Patterns of evolution of myocyte damage after human heart transplantation detected by indium-111 monoclonal antimyosin. Am J Cardiol 1988; 62: 623–7.

    Article  Google Scholar 

  34. Ballester M, Obrador D, Carrió I, et al. Early postoperative reduction of monoclonal antimyosin antibody uptake is associated with absent rejection-related complications after heart transplantation. Circulation 1992; 85: 61–8.

    PubMed  CAS  Google Scholar 

  35. Ballester M, Obrador D, Carrió I, et al.111In-monoclonal antimyosin antibody studies after the first year of heart transplantation: identification of risk groups for developing rejection during long-term follow-up and clinical implications. Circulation 1990; 82: 2100–8.

    PubMed  CAS  Google Scholar 

  36. Aretz HT, Billingham ME, Edwards WD, et al. Myocarditis: a histopathologic definition and classification. J Cardiovasc Pathol 1986; 1: 3–14.

    Google Scholar 

  37. Yasuda T, Palacios IF, Dec GW, et al. Indium 111-monoclonal antimyosin antibody imaging in the diagnosis of acute myocarditis. Circulation 1987; 76: 306–11.

    PubMed  CAS  Google Scholar 

  38. Carrió I, Berná L, Ballester M, et al. Indium-111 antimyosin scintigraphy to assess myocardial damage in patients with suspected myocarditis and cardiac rejection. J Nucl Med 1988; 29: 1893–900.

    PubMed  Google Scholar 

  39. Narula J, Yasuda T, Khaw BA, et al. Antimyosin scintigraphy in detection of myocarditis: evaluation of a diagnostic methodology [Abstract]. J Am Coll Cardiol 1991; 17: 342.

    Google Scholar 

  40. Dec GW, Palacios IF, Yasuda T, et al. Antimyosin antibody cardiac imaging: its role in the diagnosis of myocarditis. J Am Coll Cardiol 1990; 16: 97–104.

    PubMed  CAS  Google Scholar 

  41. Dec GW, Palacios IF, Fallon JT, et al. Active myocarditis in spectrum of acute dilated cardiomyopathies: clinical features, histological correlates and clinical outcome. N Engl J Med 1985; 312: 885–90.

    PubMed  Google Scholar 

  42. Brooks R, Burgess JH. Idiopathic ventricular tachycardia. Medicine (Baltimore) 1988; 67: 271–94.

    CAS  Google Scholar 

  43. Narula J, Khaw BA, Dec GW, et al. Recognition of acute myocarditis masquerading as acute myocardial infarction. N Engl J Med 1993; 328: 100–4.

    Article  PubMed  CAS  Google Scholar 

  44. Hauck AJ, Kearney DL, Edwards WD. Evaluation of postmortem endomyocardial biopsy specimens from 38 patients with lymphocytic myocarditis: implications for role of sampling error. Mayo Clin Proc 1989; 64: 1235–45.

    PubMed  CAS  Google Scholar 

  45. Obrador D, Ballester M, Carrió I, Bernà L, Pons G. High prevalence of ongoing myocyte damage in patients with chronic dilated cardiomyopathy. J Am Coll Cardiol 1989; 13: 1289–93.

    PubMed  CAS  Google Scholar 

  46. Abelman WH, Roberts WC. Cardiomyopathy and specific heart muscle disease. In: Hurst JW, ed. The heart. New York: McGraw-Hill, 1989: 1313.

    Google Scholar 

  47. Casans I, Villar A, Almenar V, Blanes A. Lyme myocarditis diagnosed by indium-111 antimyosin antibody scintigraphy. Eur J Nucl Med 1989; 15: 330–1.

    Article  PubMed  CAS  Google Scholar 

  48. Krause T, Schumichen C, Beck A, Lang B, Hohnloser S, Moser E. Scintigraphy using 111-indium-labeled antimyosin in ChurgStrauss vasculitis with myocardial involvement. Nuklearmedizin 1990; 29: 177–9.

    PubMed  CAS  Google Scholar 

  49. Malhotra A, Narula J, Yasuda T, et al. 111-Indium antimyosin antibody imaging for diagnosis of rheumatic carditis. J Nucl Med 1990; 31: 84.

    Google Scholar 

  50. Samuels MA, Southern JF. Case records of the Massachusetts General Hospital. N Engl J Med 1988; 318: 970–80.

    Google Scholar 

  51. Spar IL, Goodland RL, Schwartz SI. Detection of preformed venous thrombi in dogs by means of I131-labeled antibodies to dog fibrinogen. Circ Res 1965; 17: 322–9.

    PubMed  CAS  Google Scholar 

  52. Spar IL, Varon MI, Goodland RL, Schwartz SI. Isotopic detection of thrombi. Arch Surg 1966; 92: 752–8.

    PubMed  CAS  Google Scholar 

  53. Bosnjakovic VB, Jankovic BD, Horvat J, Cvoric J. Radiolabeled antihuman fibrin antibody: a new thrombus-detecting agent. Lancet 1977; 1: 452–4.

    Article  PubMed  CAS  Google Scholar 

  54. Scheefers-Borchel U, Muller-Berghaus G, Fuhge P, Eberle R, Heimberger N. Discrimination between fibrin and fibrinogen by a monoclonal antibody against a synthetic peptide. Proc Natl Acad Sci USA 1985; 82: 7091–5.

    Article  PubMed  CAS  Google Scholar 

  55. Hui KY, Haber E, Matsueda GF. Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not fibrinogen. Science 1983; 222: 1129–32.

    Article  PubMed  CAS  Google Scholar 

  56. Matsueda GR, Margolies MN. Structural basis for species selectivity of a fibrin specific monoclonal antibody. Biochemistry 1986; 25: 1451–5.

    Article  PubMed  CAS  Google Scholar 

  57. Kudryk B, Rohoza A, Ahadi M, Chin J, Wiebe M. Specificity of a monoclonal antibody for the NH2-terminal region of fibrin. Mol Immunol 1984; 21: 89–94.

    Article  PubMed  CAS  Google Scholar 

  58. Knight LC, Maurer AH, Ammar IA, et al.99mTc-antifibrin Fab′ fragments for imaging venous thrombi: evaluation in a canine model. Radiology 1989; 173: 163–9.

    PubMed  CAS  Google Scholar 

  59. Gargan PE, Ploplis VA, Scheu JD. A fibrin specific monoclonal antibody which interferes with the fibrinolytic effect of tissue plasminogen activator. Thromb Haemost 1988; 59: 426–31.

    PubMed  CAS  Google Scholar 

  60. Wasser MNJM, Koppert PW, Arndt JW, et al. An antifibrin monoclonal antibody useful in immunoscintigraphic detection of thrombi. Blood 1989; 74: 708–14.

    PubMed  CAS  Google Scholar 

  61. Holvoet P, Stassen JM, Hashimoto Y, et al. Binding properties of monoclonal antibodies against human fragment D-dimer of cross-linked fibrin to human plasma clots in an in vivo model in rabbits. Throm Haemost 1989; 61: 307–13.

    CAS  Google Scholar 

  62. Rosebrough SF, McAfee JG, Grossman ZD, et al. Thrombosis imaging: a comparison of radiolabeled GC4 and T2G1s fibrin-specific monoclonal antibodies. J Nucl Med 1990; 31: 1048–54.

    PubMed  CAS  Google Scholar 

  63. Elms MJ, Bunce IH, Bundesen PG, et al. Measurement of crosslinked fibrin degradation products: an immunoassay using monoclonal antibodies. Thromb Haemost 1983; 50: 591–4.

    PubMed  CAS  Google Scholar 

  64. Rylatt D, Black AS, Cottis LE, et al. An immunoassay for human d dimer using monoclonal antibodies. Thromb Res 1983; 31: 767–78.

    Article  PubMed  CAS  Google Scholar 

  65. Miller K, Wible JH, Coveney J, Lyle L. Imaging thrombi in a rabbit jugular vein with technetium-99m MH-1 monoclonal antibody [Abstract]. J Nucl Med 1990; 31: 747.

    Google Scholar 

  66. Tymkewycz PM, Creighton LJ, Gascoine PS, et al. Imaging of human thrombi in the rabbit jugular vein, I: comparison of two fibrin-specific monoclonal antibodies. Thromb Res 1989; 54: 411–21.

    Article  PubMed  CAS  Google Scholar 

  67. Lusiani L, Zanco P, Visona A, et al. Immunoscintigraphic detection of venous thrombosis of the lower extremities by means of human antifibrin monoclonal antibodies labeled with111In. Angiology 1989; 40: 671–7.

    Article  PubMed  CAS  Google Scholar 

  68. Jung M, Kletter K, Dudczak R, et al. Deep vein thrombosis: scintigraphic diagnosis with In-111-labeled monoclonal antifibrin antibodies. Radiology 1989; 173: 469–75.

    PubMed  CAS  Google Scholar 

  69. deFaucal P, Peltier P, Planchon B, et al. Evaluation of111In-labeled antifibrin monoclonal antibody for the diagnosis of venous thrombotic disease. J Nucl Med 1991; 32: 785–91.

    CAS  Google Scholar 

  70. Schaible T, DeWoody K, Weisman H, et al. Accurate diagnosis of acute deep venous thrombosis with technetium-99m antifibrin scintigraphy: final phase III results [Abstract]. J Nucl Med 1992; 33: 848–9.

    Google Scholar 

  71. Bautovich G, Angelides S, Lee FT, et al. Detection of deep vein thrombi and pulmonary embolus with technetium-99m-DD-3B6/22 anti-fibrin monoclonal antibody Fab′ fragment. J Nucl Med 1994; 35: 195–202.

    PubMed  CAS  Google Scholar 

  72. Kanke M, Matsueda GR, Strauss HW, et al. Localization and visualization of pulmonary emboli with radiolabeled fibrin-specific monoclonal antibody. J Nucl Med 1991; 32: 1254–60.

    PubMed  CAS  Google Scholar 

  73. Jang I-K, Gold HK, Ziskind AA, et al. Differential sensitivity of erythrocyte-rich and platelet-rich arterial thrombi to lysis with recombinant tissue-type plasminogen activator: a possible explanation of resistance to coronary thrombolysis. Circulation 1989; 79: 920–8.

    PubMed  CAS  Google Scholar 

  74. Oster ZH, Srivastava SC, Som P, et al. Thrombus radioimmunoscintigraphy: an approach using monoclonal antiplatelet antibody. Proc Natl Acad Sci USA 1985; 82: 3465–8.

    Article  PubMed  CAS  Google Scholar 

  75. Kanke M, Powers J, Nossiff N, et al. Differences in in vivo behavior of In-111 and 1–125 labeled antiplatelet antibody (7E3) in dogs with experimental pulmonary emboli. J Nucl Med 1987; 28: 720.

    Google Scholar 

  76. Miller DD, Boulet AJ, Tio PO, et al. In vivo99mTc S12 antibody imaging of platelet alpha granules in rabbit endothelial neointimal proliferation after angioplasty. Circulation 1991; 83: 224–36.

    PubMed  CAS  Google Scholar 

  77. Miller DD, Rivera FJ, Garcia OJ, Palmaz JC, Berger HJ, Weisman HF. Imaging of vascular injury with Tc-99m-labeled monoclonal antiplatelet antibody S12: preliminary experience in human percutaneous transluminal angioplasty. Circulation 1992; 85: 1354–63.

    PubMed  CAS  Google Scholar 

  78. Lees AM, Lees RS, Schoen FJ, et al. Imaging human atherosclerosis with99mTc-labeled LDL. Atherosclerosis 1988; 8: 461–70.

    CAS  Google Scholar 

  79. Virgolani I, Muller C, Fitscha P, Chiba P, Sinzinger H. Radiolabeling autologous monocytes with111In oxime for reinjection in patients with atherosclerosis. Prog Clin Biol Res 1989; 355: 271–80.

    Google Scholar 

  80. Minar E, Ehringer H, Dudczak R, et al.111In-labeled platelet scintigraphy in carotid atherosclerosis. Stroke 1989; 20: 27–33.

    PubMed  CAS  Google Scholar 

  81. Harrison DC, Calenoff E, Chen FW, Permley WW, Khaw BA, Ross R. Plaque associated immune reactivity as a tool for the diagnosis and treatment of atherosclerosis. Proc Am Clin Climabiol Assoc 1991:210–7.

  82. Narula J, Ditlow C, Chen F, Strauss HW, Khaw BA. Noninvasive localization of experimental atherosclerotic lesions with murine/human chimeric antibody Z2D3 F(ab′)2. Circulation 1992; 86: 1–709.

    Google Scholar 

  83. Narula J, Ditlow C, Chen F, Khaw BA. Noninvasive localization of experimental atherosclerotic lesions with murine/human chimeric antibody Z2D3 F(ab′)2. Circulation 1993; 88: 1–250(abstract).

    Google Scholar 

  84. Hall BM, Bishop GA, Duggin GG, Horvath JS, Philips J, Tiller DJ. Increased expression of HLA-DR antigens on renal tubular cells in renal transplants: relevance to the rejection response. Lancet 1984; 1: 247–51.

    Article  Google Scholar 

  85. Hanafusa T, Pujol-Borrell R, Chivato L, Russell RCG, Doniach D, Bottazo GF. Aberrant expression of HLA-DR antigen on thyrocytes in Graves’ disease: relevance for autoimmunity. Lancet 1983; 2: 1111–5.

    Article  PubMed  CAS  Google Scholar 

  86. McMichael AJ, Ting A, Zweerink HF, Askonas BA. HLA restriction of cell mediated lysis of influenza virus-infected human cells. Nature 1977; 270: 524–6.

    Article  PubMed  CAS  Google Scholar 

  87. Herskowitz A, Ahmed-Ansari A, Neumann DA, et al. Induction of major histocompatibility complex antigens within the myocardium of patients with active myocarditis: a nonhistologic marker of myocarditis. J Am Coll Cardiol 1990; 15: 624–32.

    Article  PubMed  CAS  Google Scholar 

  88. Isobe M, Narula J, Southern JF, Strauss HW, Khaw BA, Haber E. Imaging the rejecting heart: in vivo detection of major histocompatability complex class II antigen induction. Circulation 1992; 85: 738–46.

    PubMed  CAS  Google Scholar 

  89. Ohtani H, Southern JF, Strauss HW, Isobe M. Imaging of ICAM-1 induction in rejecting hearts: a new scintigraphic approach to detect early allograft rejection [Abstract]. Circulation 1992; 86: 1–37.

    Google Scholar 

  90. Nedelman MA, Shealy D, Boulin R, et al. Rapid infarct imaging with a technetium-99m-labeled antimyosin recombinant single-chain Fv: evaluation in a canine model of acute myocardial infarction. J Nucl Med 1993; 34: 234–41.

    PubMed  CAS  Google Scholar 

  91. Bird RE, Hardman KD, Jacobson JW, et al. Single chain antigen binding proteins. Science 1988; 242: 423–6.

    Article  PubMed  CAS  Google Scholar 

  92. Huston JS, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody binding sites: recovery of specific activity in an antidigoxin single chain Fv analogue produced inE. coli. Proc Natl Acad Sci USA 1988; 85: 5879–83.

    Article  PubMed  CAS  Google Scholar 

  93. Knight LC, Radcliffe R, Kollman M, et al. Thrombus imaging with Tc-99m synthetic peptides reactive with activated platelets. J Nucl Med 1990; 31: 757.

    Google Scholar 

  94. Saragovi HU, Fitzpatrick D, Raktabutr A, Nakanishi H, Kahn M, Greene MI. Design and synthesis of a mimetic from an antibody complementary determining region. Science 1991; 253: 792–5.

    Article  PubMed  CAS  Google Scholar 

  95. Levine S, Levine M, Sharp KA, Brooks DE. Theory of the electrokinetic behavior of human erythrocytes. Biophys J 1983; 42: 127–35.

    PubMed  CAS  Google Scholar 

  96. Kanwar YS, Farquhar MG. Presence of heparan sulfate in the glomerular basement membrane. Proc Natl Acad Sci USA 1979; 76: 1303–7.

    Article  PubMed  CAS  Google Scholar 

  97. Eichman K, Lackland H, Hood L, Krause RM. Induction of rabbit antibody with molecular uniformity after immunization with group C streptococci. J Exp Med 1970; 131: 207–21.

    Article  Google Scholar 

  98. Khaw BA, Klibanov A, O’Donnell SM, et al. Gamma imaging with negatively charge-modified monoclonal antibody: modification with synthetic polymers. J Nucl Med 1991; 32: 1742–51.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02939985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaw, BA., Narula, J. Antibody imaging in the evaluation of cardiovascular diseases. J. Nucl. Cardiol. 1, 457–476 (1994). https://doi.org/10.1007/BF02961600

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02961600

Key Words

Navigation