Skip to main content
Log in

Conformal structure in affine geometry: Complete tchebychev hypersurfaces

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

We give a conformal classification of affine-complete centroaffine Tchebychev hypersurfaces recently introduced by Liu and Wang. This classification is based on partial differential equations known from conformal Riemannian geometry. Moreover we investigate Tchebychev hyperovaloids and generalize the classical theorem of Blaschke and Deicke on affine hyperspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Besse,Einstein Manifolds. Springer Verlag, Berlin 1987.

    MATH  Google Scholar 

  2. M. Berger, P. Gauduchon and E. Mazet,Le spectre d’une variété Riemannienne. Lecture Notes Math. Springer 194, 1971.

  3. N. Bokan, P. Gilkey andU. Simon, Applications of spectral geometry to affine and projective geometry.Contributions to Algebra and Geometry 35 (1994), 283–314.

    MATH  MathSciNet  Google Scholar 

  4. ---, Relating the second and fourth order terms in the asymptotic expansion of the heat equation.J. of Geometry, to appear.

  5. —, Second order local affine invariants.Izvestija Vusov. Mathematica 5,396 (1995), 11–15.

    MathSciNet  Google Scholar 

  6. N. Bokan, K. Nomizu andU. Simon, Affine hypersurfaces with parallel cubic forms.Tôhoku Math. J. 42 (1990), 101–108.

    Article  MATH  MathSciNet  Google Scholar 

  7. W. Blaschke,Vorlesungen über Differentialgeometrie II. Berlin, J. Springer, 1923.

    MATH  Google Scholar 

  8. F. Dillen, K. Nomizu andL. Vrancken, Conjugate connections and Radon’s theorem in affine differential geometry.Monatshefte Math. 109 (1990), 221–235.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. Kühnel, Conformal transformations between Einstein spaces.Conformal Geometry, Bonn, 1985/1986, Aspects of Math., Vieweg, Braunschweig (1988), 105–146.

    Google Scholar 

  10. M. Kozlowski and U. Simon, Hyperflächen mit äquiafnner Einsteinmetrik.Mathematica, Festschrift E. Mohr, TU Berlin, (1985), 179–190.

  11. K. Leichtweiss, Bemerkungen zur Monotonie der Affinoberfläche von Eihy-perflachen.Math. Nachr. 20 (1990), 47–60.

    MathSciNet  Google Scholar 

  12. A. M. Li, U. Simon andG. Zhao,Global Affine Differential Geometry of Hypersurfaces. W. de Gruyter, Berlin-New York, 1993.

    MATH  Google Scholar 

  13. A. M. Li andC. P. Wang, Canonical centroaffine hypersurfaces in ℝn+1.Results in Mathematics 20 (1991), 660–681.

    MATH  Google Scholar 

  14. H. L. Liu andC. P. Wang, The centroaffine Tchebychev operator.Results in Mathematics,27 (1995), 77–92.

    MATH  Google Scholar 

  15. K. Nomizu andB. Opozda, On normal and conormal maps for affine hypersur-faces.Tôhoku Math. J. 44 (1992), 425–431.

    Article  MATH  MathSciNet  Google Scholar 

  16. - - - , Integral formulas for affine surfaces and rigidity theorems of Cohn-Vossen type.In: Geometry and Topology of Submanifolds IV, Proc. Conf. Diff. Geom. and Vision, Leuven (Belgium), June 1991 (eds.: F. Dillen and L. Verstraelen), World Scientific (1992), 133–142.

  17. K. Nomizu and T. Sasaki,Affine Differential Geometry. Cambridge University Press, 1994.

  18. V. Oliker and U. Simon, Affine geometry and polar hypersurfaces.In: Analysis and Geometry: Trends in Research and Teaching (eds.: B. Fuchssteiner, W. A. J. Luxemburg), BI Mannheim-Zürich (1992), 87–112.

  19. U. Pinkall, A. Schwenk-Schellschmidt andU. Simon, Geometric methods for solving Codazzi and Monge-Ampére equations.Math. Annalen 298 (1994), 89–100.

    Article  MATH  MathSciNet  Google Scholar 

  20. E. Salkowski,Affine Differentialgeometrie. W. de Gruyter, Berlin, Leipzig 1934.

    MATH  Google Scholar 

  21. C. Scharlach, Affin-konforme Geometrie regulärer Hyperflächen.Diploma Thesis, TU Berlin 1989.

  22. R. Schneider, Translation- und Ähnlichkeitssätze für Eihyperflächen.Diploma Thesis Univ. Frankfurt/Main 1964.

  23. —, Zur affinen Differentialgeometrie im Großen I.Math. Z. 101 (1967), 375–06.

    Article  MATH  MathSciNet  Google Scholar 

  24. —, Closed convex hypersurfaces with second fundamental form of constant curvature.Proc. AMS 35 (1972), 230–233.

    Article  MATH  Google Scholar 

  25. A. Schwenk andU. Simon, Hypersurfaces with constant equiaffine mean curvature.Arch. Math. 46 (1986), 85–90.

    Article  MATH  MathSciNet  Google Scholar 

  26. U. Simon, Minkowskische Integralformeln und ihre Anwendungen in der Differentialgeometrie im Grossen.Math. Annalen 173 (1967), 307–321.

    Article  MATH  Google Scholar 

  27. - - - , Conformal and projective structures on ovaloids.Geometry and Topology of Submanifolds V, Proc. Conf. Diff. Geom. Vision, Leuven (Belgium), July 1992 (eds.: F. Dillen, L. Verstraelen, L. Vrancken and I. Van de Woestijne), World Scientific (1993), 254–259.

  28. —, Transformation techniques for partial differential equations on projectively flat manifolds.Results in Mathematics 27 (1995), 160–187.

    MATH  Google Scholar 

  29. U. Simon, A. Schwenk-Schellschmidt and H. Viesel,Introduction to the Affine Differential Geometry of Hypersurfaces., Lecture Notes, Science University Tokyo, 1991, ISBN 3-7983-1529-9.

  30. C. P. Wang, Centroaffine minimal hypersurfaces in ℝn+1.Geom. Dedicata 51 (1994), 63–74.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H.L., Simon, U. & Wang, C.P. Conformal structure in affine geometry: Complete tchebychev hypersurfaces. Abh.Math.Semin.Univ.Hambg. 66, 249–262 (1996). https://doi.org/10.1007/BF02940807

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02940807

Keywords

Navigation