Skip to main content
Log in

Elevated levels of somatic mutation in a manifesting BRCA1 mutation carrier

  • Article
  • Published:
Pathology & Oncology Research

Abstract

Homozygous loss of activity at the breast cancer-predisposing genesBRCA1 andBRCA2 (FANCD1) confers increased susceptibility to DNA double strand breaks, but this genotype occurs only in the tumor itself, following loss of heterozygosity at one of these loci. Thus, if these genes play a role in tumor etiology as opposed to tumor progression, they must manifest a heterozygous phenotype at the cellular level. To investigate the potential consequences of somatic heterozygosity for aBRCA1 mutation demonstrably associated with breast carcinogenesis on background somatic mutational burden, we applied the two standard assays of in vivo human somatic mutation to blood samples from a manifesting carrier of the Q1200X mutation inBRCA1 whose tumor was uniquely ascertained through an MRI screening study. The patient had an allele-loss mutation frequency of 19.4 × 10−6 at the autosomalGPA locus in erythrocytes and 17.1×10−6 at the X-linkedHPRT locus in lymphocytes. Both of these mutation frequencies are significantly higher than expected from age-matched disease-free controls (P<0.05). Mutation at theHPRT locus was similarly elevated in lymphoblastoid cell lines established from three otherBRCA1 mutation carriers with breast cancer. Our patient’sGPA mutation frequency is below the level established for diagnosis of homozygous Fanconi anemia patients, but consistent with data from obligate heterozygotes. The increasedHPRT mutation frequency is more reminiscent of data from patients with xeroderma pigmentosum, a disease characterized by UV sensitivity and deficiency in the nucleotide excision pathway of DNA repair. Therefore, thisBRCA1-associated breast cancer patient manifests a unique phenotype of increased background mutagenesis that likely contributed to the development of her disease independent of loss of heterozygosity at the susceptibility locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AT:

ataxia telangiectasia

FA:

Fanconi anemia

GPA:

glycophorin A

HNPCC:

hereditary non-polyposis colorectal cancer

HPRT:

hypoxanthine-guanine phosphoribosyltransferase

M f :

mutation frequency

MRI:

magnetic resonance imaging

NER:

nucleotide excision repair

XP:

xeroderma pigmentosum

References

  1. D’Andrea AD, Grompe M: The Fanconi anaemia/BRCA pathway. Nat Rev Cancer 3: 23–34, 2003

    Article  PubMed  CAS  Google Scholar 

  2. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De DieSmulders C, Persky N, Grompe M, Joenje H, Pals G, Ikeda H, Fox EA, D’Andrea AD: Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297: 606–609, 2002

    Article  PubMed  CAS  Google Scholar 

  3. Papadopoulos N, Lindblom A: Molecular basis of HNPCC: mutations of MMR genes. Hum Mutat 10: 89–99, 1997

    Article  PubMed  CAS  Google Scholar 

  4. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD: Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70: 923–935, 1992

    Article  PubMed  CAS  Google Scholar 

  5. Nieuwenhuis B, Van Assen-Bolt AJ, Van Waarde-Verhagen MA, Sijmons RH, Van der Hout AH, Bauch T, Streffer C, Kampinga HH: BRCA1 and BRCA2 heterozygosity and repair of X-ray-induced DNA damage. Int J Radiat Biol 78: 285–295, 2002

    Article  PubMed  CAS  Google Scholar 

  6. Trenz K, Rothfuss A, Schutz P, Speit G: Mutagen sensitivity of peripheral blood from women carrying a BRCA1 or BRCA2 mutation. Mutat Res 500: 89–96, 2002

    PubMed  CAS  Google Scholar 

  7. Mamon H, Dahlberg W, Little JB: Hemizygous fibroblast cell strains established from patients with BRCA1 or BRCA2 mutations demonstrate an increased rate of spontaneous mutations and increased radiosensitivity. Int J Radiat Oncol Biol Phys 57(Suppl 2): S346-S347, 2003

    Google Scholar 

  8. Rothfuss A, Schutz P, Bochum S, Volm T, Eberhardt E, Kreienberg R, Vogel W, Speit G: Induced micronucleus frequencies in peripheral lymphocytes as a screening test for carriers of a BRCA1 mutation in breast cancer families. Cancer Res 60: 390–394, 2000

    PubMed  CAS  Google Scholar 

  9. Grant SG, Jensen RH: Use of hematopoietic cells and markers for the detection and quantitation of humanin vivo somatic mutation. In: Immunobiology of Transfusion Medicine. (Ed: Garratty G), Marcel Dekker, New York, 1993, pp. 299–323

    Google Scholar 

  10. Grant SG, Bigbee WL, Langlois RG, Jensen RH: Methods for the detection of mutational and segregational events: relevance to the monitoring of survivors of childhood cancer. In: Late Effects of Treatment for Childhood Cancer. (Eds: Green DM, and D’Angio GJ), Wiley-Liss, New York, 1992, pp. 133–150

    Google Scholar 

  11. Tompa A, Sapi E: Detection of 6-thioguanine resistance in human peripheral blood lymphocytes (PBL) of industrial workers and lung cancer patients. Mutat Res 210: 345–351, 1989

    PubMed  CAS  Google Scholar 

  12. Cole J, Skopek TR: Somatic mutant frequency, mutation rates and mutational spectra in the human population in vivo. Mutat Res 304: 33–105, 1994

    PubMed  CAS  Google Scholar 

  13. Okada S, Ishii H, Nose H, Okusaka T, Kyogoku A, Yoshimori M, Wakabayashi K: Evidence for increased somatic cell mutations in patients with hepatocellular carcinoma. Carcinogenesis 18: 445–449, 1997

    Article  PubMed  CAS  Google Scholar 

  14. Grant SG: Molecular epidemiology of human cancer: biomarkers of genotoxic exposure and susceptibility. J Environ Pathol Toxicol Oncol 20: 245–261, 2001

    PubMed  CAS  Google Scholar 

  15. Langlois RG, Bigbee WL, Jensen RH: The glycophorin A assay for somatic cell mutations in humans. Prog Clin Biol Res 340C: 47–56, 1990

    PubMed  CAS  Google Scholar 

  16. Swift M, Morrell D, Massey RB, Chase CL: Incidence of cancer in 161 families affected by ataxia-telangiecasia. N Engl J Med 325: 1831–1836, 1991

    PubMed  CAS  Google Scholar 

  17. Kerangueven F, Eisinger F, Noguchi T, Allione F, Wargniez V, Eng C, Padberg G, Theillet C, Jacquemier J, Longy M, Sobol H, Birnbaum D: Loss of heterozygosity in human breast carcinomas in the ataxia telangiectasia, Cowden disease and BRCA1 regions. Oncogene 14: 339–347, 1997

    Article  PubMed  CAS  Google Scholar 

  18. Rubinstein WS, Latimer JJ, Sumkin JH, Huerbin M, Grant SG, Vogel VG: Prospective screening study of 0.5 Tesla dedicated magnetic resonance imaging for the detection of breast cancer in young, high risk women. BMC Women’s Health 6: 10, 2006

    Article  PubMed  Google Scholar 

  19. Latimer JJ, Rubinstein WS, Johnson JM, Kanbour-Shakir A, Vogel VG, Grant SG: Haploinsufficiency forBRCA1 is associated with normal levels of DNA nucleotide excision repair in breast tissue and blood lymphocytes. BMC Med Genet 6: 26, 2005

    Article  PubMed  CAS  Google Scholar 

  20. O’Neill JP, McGinniss MJ, Berman JK, Sullivan LM, Nicklas JA, Albertini RJ: Refinement of a T-lymphocyte cloning assay to quantify thein vivo thioguanine-resistant mutant frequency in humans. Mutagenesis 2: 87–94, 1987

    Article  PubMed  CAS  Google Scholar 

  21. Grant SG: TheGPA in vivo somatic mutation assay. Meth Mol Biol 291: 179–195, 2005

    CAS  Google Scholar 

  22. Jensen RH, Bigbee WL, Langlois RG: In vivo somatic mutations in the glycophorin A locus of human erythroid cells. Banbury Rep 28: 149–159, 1987

    CAS  Google Scholar 

  23. Manchester DK, Nicklas JA, O’Neill JP, Lippert MJ, Grant SG, Langlois RG, Moore DH 3rd,Jensen RH, Albertini RJ, Bigbee WL: Sensitivity of somatic mutations in human umbilical cord blood to maternal environments. Environ Mol Mutagen 26: 203–212, 1995

    Article  PubMed  CAS  Google Scholar 

  24. Grant SG, Reeger W, Wenger SL: Diagnosis of ataxia telangiectasia with the glycophorin A somatic mutation assay. Genet Testing 1: 261–267, 1998

    CAS  Google Scholar 

  25. Finette BA, Sullivan LM, O’Neill JP, Nicklas JA, Vacek PM, Albertini RJ: Determination ofhprt mutant frequencies in T-lymphocytes from a healthy pediatric population: statistical comparison between newborn, children and adult mutant frequencies, cloning efficiency and age. Mutat Res 308: 223–231, 1994

    PubMed  CAS  Google Scholar 

  26. Tates AD, van Dam FJ, van Mossel H, schoemaker H, Thijssen JC, Woldring VM, Zwinderman AH, Natarajan AT: Use of the clonal assay for the measurement of frequencies of HPRT mutants in T-lymphocytes from five control populations. Mutat Res 253: 199–213, 1991

    PubMed  CAS  Google Scholar 

  27. Branda RF, Sullivan LM, O’Neill JP, Falta MT, Nicklas JA, Hirsch B, Vacek PM, Albertini RJ: Measurement of HPRT mutant frequencies in T-lymphocytes from healthy human populations. Mutat Res 285: 267–279, 1993

    PubMed  CAS  Google Scholar 

  28. Jones IM, Moore DH, Thomas CB, Thompson CL, Strout CL, Burkhart-Schultz K: Factors affectingHPRT mutant frequency in T-lymphocytes of smokers and nonsmokers. Cancer Epidemiol Biomarkers Prev 2: 249–260, 1993

    PubMed  CAS  Google Scholar 

  29. Finette BA, Kendall H, Vacek PM: Mutational spectral analysis at the HPRT locus in healthy children.Mutat Res 505: 27–41, 2002

    PubMed  CAS  Google Scholar 

  30. Hüttner E, Holzapfel B, Kropf S: Frequency of HPRT mutant lymphocytes in a human control population as determined by the T-cell cloning procedure. Mutat Res 348: 83–91, 1995

    Article  PubMed  Google Scholar 

  31. Becker R, Nikolova T, Wolff I, Lovell D, Hüttner E, Foth H: Frequency of HPRT mutants in humans exposed to vinyl chloride via an environmental accident. Mutat Res 494: 87–96, 2001

    PubMed  CAS  Google Scholar 

  32. Sala-Trepat M, Boyse J, Richard P, Papadopoulo D, Moustacchi E: Frequencies ofHPRT lymphocytes and glycophorin A variants erythrocytes in Fanconi anemia patients, their parents and control donors. Mutat Res 289: 115–126, 1993

    PubMed  CAS  Google Scholar 

  33. Evdokimova VN, McLoughlin RK, Wenger SL, Grant SG: Use of the glycophorin A bone marrow somatic mutation assay for rapid, unambiguous identification of Fanconi anemia homozygotes regardless ofGPA genotype. Am J Med Genet 135: 59–65, 2005

    Article  PubMed  Google Scholar 

  34. Grant SG, Wenger SL, Rubinstein WS, Latimer JJ, Bigbee WL, Auerbach AD: Elevated levels of somatic mutation in homozygotes and heterozygotes for inactivating mutations in the genes of the FA/BRCA DNA repair pathway [abstract]. Am J Hum Genet 75(Suppl): 94, 2004

    Google Scholar 

  35. Vijayalaxmi, Wunder E, Schroeder TM: Spontaneous 6-thioguanine-resistant lymphocytes in Fanconi anemia patients and their heterozygous parents. Hum Genet 70: 264–270, 1985

    PubMed  CAS  Google Scholar 

  36. Tates AD, Bernini LF, Natarajan AT, Ploem JS, Verwoerd NP, Cole J, Green MHL, Arlett CF, Norris PN: Detection of somatic mutants in man: HPRT mutations in lymphocytes and hemoglobin mutations in erythrocytes. Mutat Res 213: 73–82, 1989

    PubMed  CAS  Google Scholar 

  37. Cole J, Green MHL, Stephens G, Waugh AP, Beare D, Steingrimsdottir H, Brideges BA: HPRT somatic mutation data. Prog Clin Biol Res 340C: 25–35, 1990

    PubMed  CAS  Google Scholar 

  38. Norris PG, Limb GA, Hamblin AS, Lehmann AR, Arlett CF, Cole J, Waugh AP, Hawk JL: Immune function, mutant frequency, and cancer risk in the DNA repair defective genodermatoses xeroderma pigmentosum, Cockayne’s syndrome, and trichothiodystrophy. J Invest Dermatol 94: 94–100, 1990

    Article  PubMed  CAS  Google Scholar 

  39. Vermeulen W, Scott RJ, Rodgers S, Muller HJ, Cole J, Arlett CF, Kleijer WJ, Bootsma D, Hoeijmakers JH, Weeda G: Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription geneERCC3. Am J Hum Genet 54: 191–200, 1994

    PubMed  CAS  Google Scholar 

  40. Anstey AV, Arlett CF, Cole J, Norris PG, Hamblin AS, Limb GA, Lehmann AR, Wilkinson JD, Turner M: Long-term survival and preservation of natural killer cell activity in a xeroderma pigmentosum patient with spontaneous regression and multiple deposits of malignant melanoma. Br J Dermatol 125: 272–278, 1991

    Article  PubMed  CAS  Google Scholar 

  41. Cole J, Arlett CF, Norris PG, Stephens G, Waugh AP, Beare DM, Green MHL: Elevatedhprt mutant frequency in circulating T-lymphocytes of xeroderma pigmentosum patients. Mutat Res 273: 171–178, 1992

    PubMed  CAS  Google Scholar 

  42. Lin YW, Kubota M, Hirota H, Furusho K, Tomiwa K, Ochi J, Kasahara Y, Sasaki H, Ohta S: Somatic cell mutation frequency at the HPRT, T-cell antigen receptor and glycophorin A loci in Cockayne syndrome. Mutat Res 337: 49–55, 1995

    PubMed  CAS  Google Scholar 

  43. Akiyama M, Kyoizumi S, Hirai Y, Kusunoki Y, Iwamoto KS, Nakamura N: Mutation frequency in human blood cells increases with age. Mutat Res 338: 141–149, 1995

    PubMed  CAS  Google Scholar 

  44. Morley AA, Cox S, Holliday R: Human lymphocytes resistant to 6-thioguanine increase with age. Mech Ageing Dev 19: 21–26, 1982

    Article  PubMed  CAS  Google Scholar 

  45. Vrieling H, Tates AD, Natarajan AT, van Zeeland AA: Age-related accumulation of mutations in human T-lymphocytes. Ann N Y Acad Sci 663: 36–42, 1992

    Article  PubMed  CAS  Google Scholar 

  46. Branda RF, O’Neill JP, Jacobson-Kram D, Albertini RJ: Factors influencing mutation at thehprt locus in T-lymphocytes: studies in normal women and women with benign and malignant breast masses. Environ Mol Mutagen 19: 274–281, 1992

    Article  PubMed  CAS  Google Scholar 

  47. Latimer JJ, Kisin E, Zayas-Rivera B, Kanbour-Shakir A, Kelley J, Johnson R, Grant SG: Increased somatic mutation and reduced DNA repair in breast cancer patients and their tumors [abstract]. Proc Am Assoc Cancer Res 40: 440, 1999

    Google Scholar 

  48. Nicklas JA, Lippert MJ, Hunter TC, O’Neill JP, Albertini RJ: Analysis of human HPRT deletion mutations with X-linked probes and pulsed field gel electrophoresis. Environ Mol Mutagen 18: 270–273, 1991

    Article  PubMed  CAS  Google Scholar 

  49. Papadopoulo D, Guillouf C, Mohrenweiser H, Moustacchi E: Hypomutability in Fanconi anemia cells is associated with increased deletion frequency at the HPRT locus. Proc Natl Acad Sci USA 87: 8383–8387, 1990

    Article  PubMed  CAS  Google Scholar 

  50. Laquerbe A, Sala-Trepat M, Vives C, Escarceller M, Papadopoulo D: Molecular spectra of HPRT deletion mutations in circulating T-lymphocytes in Fanconi anemia patients. Mutat Res 431: 341–350, 1999

    PubMed  CAS  Google Scholar 

  51. Elmore E, Swift M: Growth of cultured cells from patients with Fanconi anemia. J Cell Physiol 87: 229–233, 1975

    Article  PubMed  CAS  Google Scholar 

  52. Weksberg R, Buchwald M, Sargent P, Thompson MW, Siminovitch L: Specific cellular defects in patients with Fanconi anemia. J Cell Physiol 101: 311–323, 1979

    Article  PubMed  CAS  Google Scholar 

  53. Thompson LH: Nucleotide excision repair: its relation to human disease. In: DNA Damage and Repair, Volume 2: DNA Repair in Higher Eukaryotes. (Eds: Nickoloff JA and Hoekstra MF), Humana, Totowa, NJ, 1998, pp. 335–393

    Google Scholar 

  54. Hartman A-R, Ford JM: BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat Genet 32: 180–184, 2002

    Article  PubMed  CAS  Google Scholar 

  55. Takimoto R, MacLachlan TK, Dicker DT, Niitsu Y, Mori T, el-Deiry WS: BRCA1 transcriptionally regulates damaged DNA binding protein (DDB2) in the DNA repair response following UV-irradiation. Cancer Biol Ther 1: 177–186, 2002 (comment 1: 187–188, 2002)

    PubMed  CAS  Google Scholar 

  56. Kovacs E, Stucki D, Weber W, Muller H: Impaired DNA-repair synthesis in lymphocytes of breast cancer patients. Eur J Cancer Clin Oncol 22: 863–869, 1986

    Article  PubMed  CAS  Google Scholar 

  57. Xiong P, Bondy ML, Li D, Shen H, Wang LE, Singletary SE, Spitz MR, Wei Q: Sensitivity to benzo[a]pyrene diol-epoxide associated with risk of breast cancer in young women and modulation by glutathione S-transferase polymorphisms: a case-control study. Cancer Res 61: 8465–8469, 2001

    PubMed  CAS  Google Scholar 

  58. Kennedy DO, Agrawal M, Shen J, Terry MB, Zhang FF, Senie RT, Motykiewicz G, Santella RM: DNA repair capacity of lymphoblastoid cell lines from sisters discordant for breast cancer. J Natl Cancer Inst 97: 127–132, 2005

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Grant.

Additional information

This work was supported by the following grants and institutions: NIH grant CA 71894, US Army BRCP grants BC991187, BC996714 and BC9963444, Susan G. Komen Foundation grant BCTR0403339, the Ruth Estrin Goldberg Foundation and the Pennsylvania Department of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, S.G., Das, R., Cerceo, C.M. et al. Elevated levels of somatic mutation in a manifesting BRCA1 mutation carrier. Pathol. Oncol. Res. 13, 276–283 (2007). https://doi.org/10.1007/BF02940305

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02940305

Key words

Navigation