Skip to main content
Log in

The biochemical diagnosis of lysosomal storage diseases — A review of five years experience

  • Published:
Irish Journal of Medical Science Aims and scope Submit manuscript

Summary

The inherited lysosomal storage diseases are a distinct group of inborn errors of metabolism characterised by deficiencies in specific lysosomal enzymes. As many as 40 such disorders have now been described in man. We have measured the activities of up to 16 lysosomal acid hydrolases in plasma and/or extracts of leucocytes and cultured skin fibroblasts from 198 patients referred from throughout Ireland. These 16 assays allowed the biochemical diagnosis of 20 lysosomal storage diseases. Activities were compared with reference ranges to determine homozygotes and heterozygotes. Of the 44 patients with positive results, 15 were diagnosed as being homozygous for a specific lysosomal enzyme deficiency, 4 were identified as having multiple enzyme deficiencies (mucolipidosis Type II/I-cell disease) and 25 had heterozygote (carrier) enzyme levels. Of the latter, 24 were either parents (obligate heterozygotes) or siblings of homozygotes and one was a heterozygote for the X-linked recessively inherited Fabry’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tay, W. Symmetrical changes in the region of the yellow spot in each eye of an infant Trans. Opthalmol, Soc. U.K. 1881: 1, 55–57.

    Google Scholar 

  2. Sachs, B. On arrested cerebral development, with special reference to cortical pathology. J. Nerv. Ment Dis. 1887, 14, 541–554.

    Article  Google Scholar 

  3. Hers, H. G. Inborn lysosomal diseases. Gastroenterology 1965: 48, 625–633.

    PubMed  CAS  Google Scholar 

  4. Hers, H. G. α-Glucosidase deficiency in generalized glycogen storage disease (Pompe’s disease). Biochem. J. 1963: 86, 1–6.

    Google Scholar 

  5. de Duve, C., Wattiaux, R. Functions of lysosomes. Annu. Rev. Physiol, 1966: 28, 435–492.

    Article  PubMed  Google Scholar 

  6. Callahan, J. W., Lowden, J. A. (eds), Lysosomes and lysosomal storage diseases. New York: Raven Press. 1981: 1–434.

    Google Scholar 

  7. Nelson, J. The mucopolysaccharidoses in Northern Ireland: a clinical, genetic and biochemical study. The Queen’s University of Belfast, M.D., 1985–86.

  8. Hsia, D., Yi-Y. Study of hereditary metabolic diseases using in vitro techniques. Metabolism 1970: 19,309–339.

    Article  PubMed  CAS  Google Scholar 

  9. Galjaard, H. Genetic metabolic diseases. Amsterdam: Elsevier/North-Holland Biomedical Press, 1980.

    Google Scholar 

  10. Kolodny, E. H., Mumford, R. A. Human leucocyte acid hydrolases: characteristics of eleven lysosomal enzymes and study of reaction conditions for their automated analysis. Clin. Chim. Acta 1976: 70, 247–257.

    Article  PubMed  CAS  Google Scholar 

  11. Buchwald, M. Use of cultured human cells for biochemical analysis. Clin. Biochem. 1984: 17, 143–150.

    Article  PubMed  CAS  Google Scholar 

  12. Chen, T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell Res. 1977: 104, 255–262,

    Article  PubMed  CAS  Google Scholar 

  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. Protein measurement with the Folin phenol reagent J. Biol. Chem. 1951: 193, 265–275.

    PubMed  CAS  Google Scholar 

  14. Galjaard, H., Mekes, M., De Josselin de Jong, J. E., Niermeijer, M. F. A method for rapid diagnosis of Glycogenosis II. Clin. Chim. Acta 1973: 49. 361–375.

    Article  PubMed  CAS  Google Scholar 

  15. Weissman, B. Synthetic substrates for α-Liduronidase. Methods in Enzymol. 1978: 50, 141–150.

    Article  Google Scholar 

  16. Marsh, J., Fensom, A. H. 4- Methylumbelliferyl α-N-acetylglucosaminidase activity for diagnosis of Sanfillippo B disease. Clin. Genet. 1985: 27, 258–262.

    PubMed  CAS  Google Scholar 

  17. Van Diggelen, O. P., Galjaard, H., Sinnott, M. L., Smith, P. J. Specific activation of lysosomal glycosidase in living fibroblasts by the corresponding glycosylmethyl-p-nitrophenyl triazenes. Biochem. J. 1980: 188, 337–343.

    PubMed  Google Scholar 

  18. Fluharty, A. L., Stevens, R. L., Sanders, D. L., Kihara, H. Arylsulfatase B deficiency in Maroteaux-Lamy syndrome cultured fibroblasts. Biochem. Biophys. Res. Commun. 1974: 59, 455–461,

    Article  PubMed  CAS  Google Scholar 

  19. Glaser, J. H., Sly, W. S. β-Glucuronidase deficiency mucopolysaccharidosis: methods for enzymatic diagnosis. J. Lab. Clin. Med. 1973: 82, 969–977.

    PubMed  CAS  Google Scholar 

  20. Besley, G. T. N., Moss, S. E. Studies on pyrophosphate diesterase activity in cultured human fibroblasts: a deficiency in Niemann-Pick disease. Clin. Chim. Acta 1981: 117, 75–84.

    Article  PubMed  CAS  Google Scholar 

  21. Wenger, D. A., Clark, C., Saltier, M., Wharton, C. Synthetic substrate β-glucosidase activity in leucocytes: a reproducible method for the identification of patients and carriers of Gaucher’s disease. Clin. Genet. 1978: 13, 145–153.

    Article  PubMed  CAS  Google Scholar 

  22. Daniels, L. B., Glew, R. H. β-Glucosidase assays in the diagnosis of Gaucher’s disease. Clin. Chem. 1982: 28, 569–577.

    PubMed  CAS  Google Scholar 

  23. Humbels, R. Rapid method for measuring arylsulfatases A and B in leucocytes as a diagnosis for sulfatidosis, mucosulfatidosis and mucopolysaccharidosis VI. Clin. Chim. Acta 1976: 68, 339–341.

    Article  Google Scholar 

  24. Baum, H., Dodgson, K. S., Spencer, B. The assay of arylsulfatases A and B in human urine. Clin. Chim. Acta. 1959: 4, 453–455.

    Article  PubMed  CAS  Google Scholar 

  25. Besley, G. T. N., Broadhead, D. M., Young, J. A. Gm2-gangliosidosis variant with altered substrate specificity: evidence for α-locus genetic compound. J. Inherited Metab. Dis. 1987: 10, 403–404.

    Article  PubMed  CAS  Google Scholar 

  26. Grebner, E. E., Wenger, D. A. Use of 4- methylumbelliferyl-6-sulpho-2-acetamido- 2-deoxy-β-D-glucopyranoside for prenatal diagnosis of Tay-Sachs disease using chorionic villus. Prenat. Diagn. 1987: 7, 419–423.

    Article  PubMed  CAS  Google Scholar 

  27. O’Brien, J. S., Okada, S., Fillerup, D. L. et al. Tay-Sachs disease: prenatal diagnosis. Science 1971: 172, 61–64.

    Article  PubMed  CAS  Google Scholar 

  28. Kistler, J. P., Lott, J. T., Kolodny, E, H. et al. Mannosidosis. Arch. Neurol. 1977: 34, 45–51.

    PubMed  CAS  Google Scholar 

  29. Robinson, D., Thorpe, R. Fluorescent assay of α-L-fucosidase. Clin. Chim. Acta 1974: 55, 65–69.

    Article  PubMed  CAS  Google Scholar 

  30. Desnick, R. J., Allen, K. Y., Desnick, S. J., Raman, M. K., Bemlohr, R. W., Krivit, W. Fabry’s disease: enzymatic diagnosis of hemizygotes and heterozygotes. α-Galactosidase activities in plasma, serum, urine and leucocytes. J. Lab. Clin. Med. 1973: 81,157–171.

    PubMed  CAS  Google Scholar 

  31. Desnick, R. J., Bernstein, H. S., Astrin, K. H., Bishop, D. F. Fabry’s disease: molecular diagnosis of hemizygotes and heterozygotes. Enzyme 1987: 38, 54–64.

    PubMed  CAS  Google Scholar 

  32. Reitman, A. L., Varki, A., Komfeld, S. Fibroblasts from patients with I-cell disease and pseudo-Hurler polydystrophy are deficient in uridine 5’-diphosphate-N-acetylglucosamine: glycoprotein N-acetyl-glucosam- inylphosphotransferase activity. J. Clin. Invest. 1981: 67, 1574–1579.

    Article  PubMed  CAS  Google Scholar 

  33. Lemansky, P., Gieselmann, V., Hasilik, A., von Figura, K. Synthesis and transport of lysosomal acid phosphatase in normal and I-cell fibroblasts J. Biol. Chem. 1985, 260, 9023–9030.

    PubMed  CAS  Google Scholar 

  34. Waheed, A., Pohlmann, R., Hasilik, A., von Figura, K., van Elsen, A., Leroy, J. G. Deficiency of UDP-N-acetylglucosamine-I-phosphotransferase in organs of I-cell patients. Biochem. Biophys. Res. Commun. 1982: 105, 1052–1058.

    Article  PubMed  CAS  Google Scholar 

  35. Aerts, J. M. F. G., Brul, S., Donker-Koopman, W. E. et al. Efficient routing of glucocerebrosidase to lysosomes requires complex oligosaccharide chain formation. Biochem. Biophys. Res. Commun, 1986: 141, 452–458.

    Article  PubMed  CAS  Google Scholar 

  36. Krivit, W., Paul, N. W. (eds). Bone marrow transplantation for treatment of lysosomal storage diseases. Birth Defects: Original Article Series. New York: Alan R. Liss, Inc. 1986: Vol, 22.

    Google Scholar 

  37. Krivit, W., Lipton, M. E., Lockman, L. A. et al. Prevention of deterioration in Metachromatic Leucody strophy by bone marrow transplantation. Am. J. Med. Sci. 1987: 294, 80–85.

    Article  PubMed  CAS  Google Scholar 

  38. Hobbs, J. R. Displacement bone marrow transplantation and immunoprophylaxis for genetic diseases. Adv. Intern. Med. 1988: 33, 81–118.

    PubMed  CAS  Google Scholar 

  39. Pollard, A. C., Carey, W. F., Nelson, P. V., Poulos, A., Hill, G. N. Enzymological diagnosis of a group of lysosomal storage diseases: review of 5-year experience of 1600 patient-sample referrals. Med. J. Aust 1980: 2, 549–553.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, I.J.C., McCusker, C.A. & McCormick, D. The biochemical diagnosis of lysosomal storage diseases — A review of five years experience. I.J.M.S. 159, 203–209 (1990). https://doi.org/10.1007/BF02937266

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02937266

Keywords

Navigation