Skip to main content
Log in

Modulation of polymerase II composition: A possible mode of transcriptional regulation of stress response in eukaryotes

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Regulation of stress response in prokaryotes is mainly achieved at the transcriptional initiation level. Prokaryotes use alternative holoenzymes, consisting of the core polymerase associated with different sigma factors, which confer on it altered specificity of transcriptional initiation. Stress response being probably one of the most inevitable features of life, it would be interesting to find if eukaryotes also use a similar strategy at this level of regulation. Since the yeastSaccharomyces cerevisiae is a model system for studying many different phenomena in eukaryotes we review the transcriptional regulation of stress in this system. Based on published observations in the literature and our own studies, we have analysed the regulation of stress response, in the yeastS. cerevisiae. Two of the core subunits of the yeast RNA polymerase II, which show altered stoichiometry within the polymerase under different conditions appear to be involved specifically in regulating the stress response. In a very broad sense then, the altered subunit composition of the core polymerase or a different holoenzyme, appears to correlate with gene expression specific to stress response inS. cerevisiae and probably reflects the scenario in other eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashburner M and Bonner J J 1979 The induction of gene activity inDrosophila by heat shock;Cell 17 241–254

    Article  CAS  Google Scholar 

  • Choder M 1993 A growth rate limiting process in the last growth phase of the yeast life cycle involvesRPB4, a subunit of RNA polymerase II;J. Bacteriol. 175 6358–6363

    Article  CAS  Google Scholar 

  • Choder M and Young R A 1993 A portion of RNA polymerase II molecules have a component essential for stress response and survival;Mol. Cell. Biol. 13 6984–6991

    Article  CAS  Google Scholar 

  • Edwards A M, Kane C M, Young R A and Kornberg R D 1991 Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoterin vitro;J. Biol. Chem. 266 71–75

    CAS  PubMed  Google Scholar 

  • Gimeno C J and Fink G R 1994 Induction of the pseudohyphal growth by overexpression ofPHDI, aSaccharomyces cerevisiae gene related to transcriptional regulators of fungal development;Mol. Cell. Biol. 14 2100–2112

    Article  CAS  Google Scholar 

  • Goodrich J A, Cutler G and Tjian R 1996 Contacts in context: Promoter Specificity and Macromolecular Interactions in Transcription;Cell 84, 825–830

    Article  CAS  Google Scholar 

  • Gow N A R 1995 Yeast-hyphal dimorphism; inThe growing fungus (eds) N A R Gow and G M Gadd (London: Chapman and Hall) pp 403–422

    Chapter  Google Scholar 

  • Guarente L 1995 Transcriptional coactivators in yeast and beyond;Trends Biochem. Sci. 20 517–521

    Article  CAS  Google Scholar 

  • Khazak V, Sadhale P P, Woychik N A, Brent R and Golemis E A 1995 Human RNA polymerase II subunit hsRPB7 functions in yeast and influences stress survival;Mol. Biol. Cell. 6 759–775

    Article  CAS  Google Scholar 

  • Kerridge D 1993 Fungal dimorphism: A sideways look; inDimorphic fungi in biology and medicine (eds) H V Bosscheet al. (New York: Plenum Press) pp 3–10

    Chapter  Google Scholar 

  • Koleske A J and Young R A 1995 The RNA polymerase II holoenzyme and its implications for gene regulation;Trends Biochem. Sci. 20 113–116

    Article  CAS  Google Scholar 

  • Liu H, Kohler J and Fink G R 1994 Suppression of hyphal formation inCandida albicans by mutation ofSTE 12 homolog;Science 266 1723–1726

    Article  CAS  Google Scholar 

  • Mager W H and Ferreira P M 1993 Stress response of yeast;Biochem J. 290 1–13

    Article  CAS  Google Scholar 

  • Malathi K, Ganesan K and Datta A 1994 Identification of a putative transcription factor inCandida albicans that can complement the mating defect inSaccharomyces cerevisiae ste12 mutants;J. Biol. Chem. 269 22945–22951

    CAS  PubMed  Google Scholar 

  • McKune K, Richards K L, Edwards A M, Young R A and Woychik N 1993RPB7, one of two dissociable subunits of yeast RNA polymerase II is essential for cell viability;Yeast 9 295–299

    Article  CAS  Google Scholar 

  • Nakahigashi K, Kanemori M, Morita M, Yanagi H and Yura T 1998 Conserved function and regulation ofσ 32 homologues in Gram-negative bacteria;J. Biosci. 23 407–414

    Article  CAS  Google Scholar 

  • Nogi Y and Fukasawa T 1981 A novel mutation that affects utilization of galactose inSaccharomyces cerevisiae;Curr. Genet. 3 91–96

    Article  CAS  Google Scholar 

  • Nover L and Scharf K D 1997 Heat stress proteins and transcription factors;Cell. Mol. Life Sci. 53 80–103

    Article  CAS  Google Scholar 

  • Schumann W, Homuth G and Mogk A 1998 The GroE chaperonin machine is the major modulator of the CIRCE heat shock regulon ofBacillus subtilis;J. Biosci. 23 415–422

    Article  CAS  Google Scholar 

  • Shepherd M G, Poulter R T M and Sullivan P A 1985Candida albicans: Biology, Genetics and Pathogenicity;Annu. Rev. Microbiol. 39 579–614

    Article  CAS  Google Scholar 

  • Sorger P K and Pelham H R B 1988 Yeast heat shock factor is an essential DNA binding protein that exhibits temperature dependent phosphorylation;Cell 54 855–864

    Article  CAS  Google Scholar 

  • Struhl K 1995 Yeast transcriptional regulatory mechanisms;Annu. Rev. Genet. 29 651–674

    Article  CAS  Google Scholar 

  • Tissieres A, Mitchell H K and Tracey U M 1974 Protein synthesis in the salivary glands ofD. melanogaster. Relation to chromosome puffs;J. Mol. Biol. 84 389–398

    Article  CAS  Google Scholar 

  • Woychik N A and Young R A 1989 RNA polymerase II subunitRPB4 is essential for high and low temperature yeast cell growth;Mol. Cell. Biol. 9 2854–2859

    Article  CAS  Google Scholar 

  • Woychik N A and Young R A 1990 RNA polymerase II: subunit structure and function;Trends Biochem. Sci. 15 347–351

    Article  CAS  Google Scholar 

  • Young R A 1991 RNA polymerase II;Annu. Rev. Biochem. 60 689–715

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag Sadhale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadhale, P., Sharma, N., Beena, P. et al. Modulation of polymerase II composition: A possible mode of transcriptional regulation of stress response in eukaryotes. J. Biosci. 23, 331–335 (1998). https://doi.org/10.1007/BF02936125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02936125

Key words

Navigation