Skip to main content
Log in

Requirements for activation of CD8+Murine T cells

I. Development of cytolytic activity

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Cytolytic effector function fails to develop if proliferation of allospecific cytolytic T lymphocyte precursors is inhibited, but the requirements for generation of cytolytic activity have not been fully defined. In contrast, the cytolytic effector function of cytolytic T lymphocyte clones does not change during the cell cycle, and the level of cytolytic activity is independent of cellular proliferation. The requirement for proliferation by primary responding populations may reflect the need for clonal expansion of a few inherently cytolytic effector cells in order to reach a threshold number which can readily be detected in conventional cytolytic assays. Alternatively, proliferation may be required for cytolytic T lymphocyte precursors to differentiate into mature, functional cytolytic cells. Using CD8+T cells which express an antigen-specific transgenic α/β T cell receptor, we have studied the requirements for acquisition of cytolytic capacity. Stimulation of the T cell receptor alone appears to be sufficient to render naive, CD8+ transgenic T cells sensitive to the growth effects of interleukin-2 (IL-2), and in some circumstances to interleukin-4 (IL-4), but not to induce either lymphokine production or cytolytic activity. Costimulatory molecules expressed by allogenic stimulating cells appear to be required for lymphokine production, and CD8+ transgenic T cells initially appear to secrete only IL-2 and interferon-γ. Stimulation of the T cell receptor of naive, CD8+ transgenic T cells appears to induce cytolytic activity only if cell proliferation occurs, either in response to IL-2 produced by the stimulated cells themselves when costimulatory molecules are present, or to IL-2 or IL-4 from exogenous sources if costimulatory molecules are absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hÿyry P, Andersson LC, Nordling S, Virolainen M. Allograft response in vitro. Transplant Rev 1972;12:91–140.

    Google Scholar 

  2. MacDonald HR, Phillips RA, Miller RG: Allograft immunity in the mouse. II. Physical studies of the development of cytotoxic effector cells from their immediate progenitors. J Immunol 1972;111:575–589.

    Google Scholar 

  3. Röllinghoff M, Schrader J, Wagner H: Effect of azathioprine and cytosine arabinoside on humoral and cellular immunity in vitro. Clin Exp Immunol 1973;15:261–269.

    PubMed  Google Scholar 

  4. Cantor H, Jandinski J: The relationship of cell division to the generation of cytolytic activity in mixed lymphocyte culture. J Exp med 1974;140:1712–1716.

    Article  PubMed  CAS  Google Scholar 

  5. Clark W, Nedrud J: Effect of BUdR on proliferation and development of cytotoxicity in mixed leukocyte culture. Cell Immunol 1974;10:159–164.

    Article  PubMed  CAS  Google Scholar 

  6. Denizot F, Wilson A, Battye F, Berke G, Shortman K: Clonal expansion of T cells: A cytotoxic T-cell response in vivo that involves precursor cell proliferation. Proc Natl Acad Sci USA 1986;83:6089–6092.

    Article  PubMed  CAS  Google Scholar 

  7. Alter BJ, Grillot-Courvalin C, Bach ML, Zier KS, Sondel PM, Bach FH: Secondary cell-mediated lympholysis: Importance of H-2 LD and SD factors. J Exp Med 1976;143:1005–1014.

    Article  PubMed  CAS  Google Scholar 

  8. Nabholz M, MacDonald HR: Cytolytic T lymphocytes. Annu Rev Immunol 1983;1:273–306.

    Article  PubMed  CAS  Google Scholar 

  9. Trenn G, Takayama H, Hu-li J, Paul WE, SitkovskyS MV: B cell stimulatory factor 1 (IL-4) enhances the development of cytoxic T from lyt-2+ resting murine T lymphocytes. J Immunol 1988;140: 1101–1106.

    PubMed  CAS  Google Scholar 

  10. Okada M, Kitahara M, Kishimoto S, Matsuda T, Hirano T, Kishimoto T: IL-6/BSF-2 functions as a killer helper factor in the in vitro induction of cytotoxic T cells. J Immunol 1988;141:1543–1549.

    PubMed  CAS  Google Scholar 

  11. Chen W-F, Zlotnik A: IL-10: A novel cytotoxic T cell differentiation factor. J Immunol 1991;147:528–534.

    PubMed  CAS  Google Scholar 

  12. Gromo G, Geller RL, Inverardi L, Bach FH: Signal requirements in the step-wise functional maturation of cytotoxic T lymphocytes. Nature 1987;327:424–426.

    Article  PubMed  CAS  Google Scholar 

  13. Wagner H, Hardt C, Rouse BT, Rollinghoff M, Scheurich P, Pfizenmaier K: Dissection of the proliferative and differentiative signals controlling murine cytotoxic T lymphocyte responses. J Exp Med 1982; 155:1876–1881.

    Article  PubMed  CAS  Google Scholar 

  14. Sha WC, Nelson CA, Newberry RD, Kranz DM, Russell JH, Loh DY: Selective expression of an antigen receptor on CD8-bearing T lymphocytes in transgenic mice. Nature 1988;335:271–274.

    Article  PubMed  CAS  Google Scholar 

  15. Glasebrook AL, Fitch FW: Alloreactive cloned T cell lines. I. Interactions between cloned amplifier and cytolytic T cell lines. J Exp Med 1980;151:876–895.

    Article  PubMed  CAS  Google Scholar 

  16. Leo O, Foo M, Sachs DH, Samelson LE, Bluestone JA: Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci USA 1987;84:1374–1378.

    Article  PubMed  CAS  Google Scholar 

  17. Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM: Reciprocal expression of interferon γ or interleukin 4 during the resolution or progression of murine leishmaniasis: Evidence for expansion of distinct helper T cell subsets. J Exp Med 1989;169:59–72.

    Article  PubMed  CAS  Google Scholar 

  18. Cherwinski HM, Schumacher JH, Brown KD, Mosmann TR: Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med 1987;166:1229–1244.

    Article  PubMed  CAS  Google Scholar 

  19. Kranz DM, Tonegawa S, Eisen HN: Attachment of an anti-receptor antibody to non-target cells renders them susceptible to lysis by a clone of cytotoxic T lymphocytes. Proc Natl Acad Sci USA 1984;81:7922–7926.

    Article  PubMed  CAS  Google Scholar 

  20. Spitalny GL, Havell EA: Monoclonal antibody to murine gamma interferon inhibits lymphokine-induced antiviral and macrophage tumoricidal activities. J Exp Med 1984;159: 1560–1565.

    Article  PubMed  CAS  Google Scholar 

  21. Sarmiento M, Dialynas DP, Lancki DW, Wall KA, Lorber MI, Loken MR, Fitch FW: Cloned T lymphocytes and monoclonal antibodies as probes for cell surface molecules active in T cell-mediated cytolysis. Immunol Rev 1982;68:135–169.

    Article  PubMed  CAS  Google Scholar 

  22. Sarmiento M, Glasebrook AL, Fitch FW: IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cellmediated cytolysis in the absence of complement. J Immunol 1980;125: 2665–2672.

    PubMed  CAS  Google Scholar 

  23. Dialynas DP, Quan ZS, Wall KA, Pierres A, Quintans J, Loken MR, Pierres M, Fitch FW: Characterization of the murine T cell surface molecule, designated L3T4 identified by monoclonal antibody GK 1.5: Similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol 1983;131:2445–2451.

    PubMed  CAS  Google Scholar 

  24. Sarmiento M, Loken MR, Fitch FW: Structural differences in cell surface T25 polypeptides from thymocytes and cloned T cells. Hybridoma 1981;1:13–26.

    PubMed  CAS  Google Scholar 

  25. Unkeless JC: Characterization of a monoclonal antibody directed against mouse macrophages and lymphocyte Fc receptors. J Exp Med 1979;150:580–596

    Article  PubMed  CAS  Google Scholar 

  26. Lowenthal JW, Corthesy P, Tougne C, Lees R, MacDonald HR, Nabholz M: High and low affinity IL 2 receptors: Analysis by IL 2 dissociation rate and reactivity with monoclonal anti-receptor antibody PC61. J Immunol 1985;135:3988–3994.

    PubMed  CAS  Google Scholar 

  27. Lancki DW, Ma DI, Havran WL, Fitch FW: Cell surface structures involved in T cell activation. Immunol Rev 1984;81:65–94.

    Article  PubMed  CAS  Google Scholar 

  28. Davidson WF, Parish CR: A procedure for removing red cells and dead cells from lymphoid cell suspensions. J Immunol Methods 1975;7: 291–300.

    Article  PubMed  CAS  Google Scholar 

  29. Nau GJ, Moldwin RL, Lancki DW, Kim D-K, Fitch FW: Inhibition of IL 2-driven proliferation of murine T lymphocyte clones by supraoptimal levels of immobilized anti-T cell receptor monoclonal antibody. J Immunol 1987;139:114–122.

    PubMed  CAS  Google Scholar 

  30. Cerottini J-C, Engers HD, MacDonald HR, Brunner KT: Generation of cytotoxic T lymphocytes in vitro. I. Response of normal and immune mouse spleen cells in mixed leukocyte cultures. J Exp Med 1974;140: 703–717.

    Article  PubMed  CAS  Google Scholar 

  31. Coleman PL, Green GJ: A coupled photometric assay for plasminogen activator. Methods Enzymol 1981; 80:408–414.

    Article  PubMed  CAS  Google Scholar 

  32. Schreiber RD, Hicks LJ, Celada A, Buchmeier NA, Gray PW: Monoclonal antibodies to murine γ-interferon which differentially modulate macrophage activation and antiviral activity. J Immunol 1985:134: 1609–1618.

    PubMed  CAS  Google Scholar 

  33. Schell SR, Nelson DJ, Fozzard HA; Fitch FW: The inhibitory effects of K+ channel-blocking agents on T lymphocyte proliferation and lymphokine production are 'nonspecific'. J Immunol 1987;139:3224–3230.

    PubMed  CAS  Google Scholar 

  34. Mosmann T: Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.

    Article  PubMed  CAS  Google Scholar 

  35. Malek TR, Ortega RG, Jakway JP, Chan C, Shevach EM: The murine IL 2 receptor. II. Monoclonal anti-IL 2 receptor antibodies as specific inhibitors of T cell function in vitro. J Immunol 1984;133:1976–1982.

    PubMed  CAS  Google Scholar 

  36. Kim D-K, Otten G, Moldwin RL, Dunn DE, Nau GJ, Fitch FW: PMA alone induces proliferation of some murine T cell clones but not others. J Immuunol 1986;137:2755–2760.

    CAS  Google Scholar 

  37. Huberman JA: New views on the biochemistry of eucaryotic DNA replication revealed by aphidicolin, an unusual inhibitor of DNA polymerase α. Cell 1981;23:647–648.

    Article  PubMed  CAS  Google Scholar 

  38. Reichard P, Ehrenberg A: Ribonucleotide reductase_— A radical enzyme. Science 1983;221:514–519.

    Article  PubMed  CAS  Google Scholar 

  39. Lalande M: A reversible arrest point in the late G1 phase of the mammalian cell cycle. Exp Cell Res 1990; 186:332–339.

    Article  PubMed  CAS  Google Scholar 

  40. Kontoghiorghes GJ, Evans RW: Site specificity of iron removal from transferrin by alpha-ketohydroxypyridine chelators. FEBS Lett 1985; 189:141–144.

    Article  PubMed  CAS  Google Scholar 

  41. Forsbek K, Nilsson K, Kontoghiorghes GJ: Variation in iron accumulation, transferrin membrane binding and DNA synthesis in the K-562 and U-937 cell lines induced by chelators and their iron complexes. Eur J Heamatol 1987;39: 318–325.

    Article  Google Scholar 

  42. Salmon ED, McKeel M, Hays T: Rapid rate of tubulin dissociation from microtubules in the mitotic spindle in vivo measured by blocking polymerization with colchicine. J Cell Biol 1984;99:1066–1075.

    Article  PubMed  CAS  Google Scholar 

  43. DeBradaner M, Geuens G, Nuydens R, Willebrords R, Aerts F, Demay J: Microtubule dynamics during cell cycle: The effects of taxol and nocodazole on the microtubule system of Ptk2 cells at different stages of the mitotic cycle. Int Rev Cytol 1986; 101:215–274.

    Article  Google Scholar 

  44. Sekaly RP, MacDonald HR, Zaech P, Glasebrook AL, Cerottini J-C: Cytolytic T lymphocyte functions is independent of growth phase and position in the mitotic cycle. J Exp Med 1981;154:575–580.

    Article  PubMed  CAS  Google Scholar 

  45. Podack ER, Hengartner H, Lichtenheld MG: A central role of perforin in cytolysis. Annu Rev Immunol 1991;9:129–157.

    PubMed  CAS  Google Scholar 

  46. Peters PJ, Borst J, Oorschot V, Fukuda M, Krähenbühl O, Tschopp J, Slot JW, Geuze HJ: Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med 1991; 173:1099–1109.

    Article  PubMed  CAS  Google Scholar 

  47. Orosz CG, Roopenian DC: Phorbol myristate acetate and in vitro T lymphocyte function. III. Selective impairment by PMA of lethal hit delivery by cloned CTL. Transplantation 1985;39:411–418.

    Article  PubMed  CAS  Google Scholar 

  48. Sano S, Kiyotaki C, Tatsumi Y, Fujiwara H, Hamaoka T: Cytotoxic T lymphocyte unresponsiveness induced by prolonged treatment with immobilized anti-CD3 antibody: Association of impairment of cytolytic activity with temporary depletion of intracellular protein kinase C. J Immunol 1989;143:2797–2805.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cronin, D.C., Lancki, D.W. & Fitch, F.W. Requirements for activation of CD8+Murine T cells. Immunol Res 13, 215–233 (1994). https://doi.org/10.1007/BF02935614

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935614

key Words

Navigation