Skip to main content
Log in

Genetic analysis of myosin assembly inCaenorhabditis elegans

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The established observations and unresolved questions in the assembly of myosin are outlined in this article. Much of the background information has been obtained in classical experiments using the myosin and thick filaments from vertebrate skeletal muscle. Current research is concerned with problems of myosin assembly and structure in smooth muscle, a broad spectrum of invertebrate muscles, and eukaryotic cells in general.

Many of the general questions concerning myosin assembly have been addressed by a combination of genetic, molecular, and structural approaches in the nematodeCaenorhabditis elegans. Detailed analysis of multiple myosin isoforms has been a prominent aspect of the nematode work. The molecular cloning and determination of the complete sequences of the genes encoding the four isoforms of myosin heavy chain and of the myosinassociated protein paramyosin have been a major landmark.

The sequences have permitted a theoretical analysis of myosin rod structure and the interactions of myosin in thick filaments. The development of specific monoclonal antibodies to the individual myosins has led to the delineation of the different locations of the myosins and to their special roles in thick filament structure and assembly.

In nematode body-wall muscles, two isoforms, myosins A and B, are located in different regions of each thick filament. Myosin A is located in the central biopolar zones, whereas myosin B is restricted to the flanking polar regions. This specific localization directly implies differential behavior of the two myosins during assembly. Genetic and structural experiments demonstrate that paramyosin and the levels of expression of the two forms are required for the differential assembly. Additional genetic experiments indicate that several other gene products are involved in the assembly of myosin. Structural studies of mutants have uncovered two new structures. A core structure separate from myosin and paramyosin appears to be an integral part of thick filaments. Multifilament assemblages exhibit multiple nascent thick filament-like structures extending from central paramyosin regions. Dominant mutants of myosin that disrupt thick filament assembly are located in the ATP and actin binding sites of the heavy chain.

A model for a cycle of reactions in the assembly of myosin into thick filaments is presented. Specific reactions of the two myosin isoforms, paramyosin, and core proteins with multifilament assemblages as possible intermediates in assembly are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson D. G. (1985) Mapping muscle protein genes byin situ hybridization using biotin-labeled probes.EMBO J. 4, 2493–2498.

    PubMed  CAS  Google Scholar 

  • Anderson, P. (1989) Molecular genetics of nematode muscle.Annu. Rev. Genet. 23, 507–525.

    Article  PubMed  CAS  Google Scholar 

  • Anderson P. and Brenner S. (1984) A selection for myosin heavy-chain mutants in the nematode.Caenorhabditis elegans.Proc. Natl. Acad. Sci. USA 81, 4470–4474.

    Article  PubMed  CAS  Google Scholar 

  • Ardizzi J. P. and Epstein H. F. (1987) Immunochemical localization of myosin heavy chain isoforms and paramyosin of developmentally and structurally diverse muscle cell types of the nematodeCaenorhabditis elegans.J. Cell Biol. 105, 2763–2770.

    Article  PubMed  CAS  Google Scholar 

  • Bejsovec A. and Anderson P. (1988) Myosin heavy chain mutations that disruptCaenorhabditis elegans thick filament assembly.Genes Devel. 2, 1307–1317.

    Article  PubMed  CAS  Google Scholar 

  • Bejsovec A. and Anderson P. (1990) Function of the myosin ATPase and actin binding sites is required forC. elegans thick filament assembly.Cell 60, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Bejsovec A., Eide D., and Anderson P. (1989) Genetic techniques for analysis of nematode muscle, inMolecular Biology of the Cytoskeleton, Borisy G. et al., eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 267–273.

    Google Scholar 

  • Benian G. M., Kiff J. E., Neckelmann N., Moerman D. G., and Waterston, R. H. (1989) Sequence of an unusually large protein implicated in regulation of myosin activity inC. elegans.Nature 342, 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Bennett P., Craig R., Starr R., and Offer G. (1986) The ultrastructural localization of C-protein, X-protein and H-protein in rabbit muscle.J. Muscle Res. Cell Motil. 7, 556–567.

    Article  Google Scholar 

  • Bouché M., Goldfine S. M., and Fischman D. A. (1988) Posttranslational incorporation of contractile proteins into myofibrils in a cell-free system.J. Cell Biol. 107, 587–596.

    Article  PubMed  Google Scholar 

  • Brown S. J. and Riddle D. L. (1985) Gene interactions affecting muscle organization inCaenorhabditis elegans.Genetics 110, 421–440.

    PubMed  CAS  Google Scholar 

  • Bullard B., Luke B., and Winkelman L. (1973) The paramyosin of insect flight muscle.J. Mol. Biol. 75, 359–367.

    Article  PubMed  CAS  Google Scholar 

  • Chowrashi P. K. and Pepe F. A. (1986) The myosin filament XII. Effect of MgATP on assembly.J. Muscle Res. Cell Motil. 7, 413–420.

    Article  PubMed  CAS  Google Scholar 

  • Cohen C., Lanar D. E., and Parry D. A. D. (1987) Amino acid sequence and structural repeats in schistosome paramyosin match those of myosin.Biosci. Rep. 7, 11–16.

    Article  PubMed  CAS  Google Scholar 

  • Cohen C., Szent-Györgyi A. G., and Kendrick-Jones J. (1971) Paramyosin and the filaments of molluscan “catch” muscles. I. Paramyosin: structure and assembly.J. Mol. Biol. 56, 223–237.

    Article  PubMed  CAS  Google Scholar 

  • Coluccio L. M. and Bretscher A. (1987) Calcium-regulated cooperative binding of the microvillar 110K-calmodulin complex to F-actin: formation of decorated filaments.J. Cell Biol. 105, 325–333.

    Article  PubMed  CAS  Google Scholar 

  • Conzelman K. A. and Mooseker, M. S. (1987) The 100 kD protein-calmodulin complex of the intestinal microvillus is an actin-activated MyATPase.J. Cell Biol. 105, 313–324.

    Article  PubMed  CAS  Google Scholar 

  • Cooper J. and Trinick J. (1984) Binding and location of AMP deaminase in rabbit psoas muscle myofibrils.J. Mol. Biol. 177, 137–152.

    Article  PubMed  CAS  Google Scholar 

  • Coulson A., Sulston J., Brenner S., and Karn J. (1986) Towards a physical map of the genome of the nematodeCaenorhabditis elegans.Proc. Natl. Acad. Sci. USA 83, 7821–7825.

    Article  PubMed  CAS  Google Scholar 

  • Craig R. and Megerman J. (1977) Assembly of smooth muscle myosin into side-polar filaments.J. Cell Biol. 75, 990–996.

    Article  PubMed  CAS  Google Scholar 

  • Craig R. and Offer G. (1976) The location of C-protein in rabbit skeletal muscle.Proc. Roy. Soc. Lond. B. 192, 451–464.

    Article  CAS  Google Scholar 

  • Cummins, C. and Anderson, P. (1988) Regulatory myosin light-chain genes ofCaenorhabditis elegans.Mol. Cell. Biol. 8, 5339–5349.

    PubMed  CAS  Google Scholar 

  • Davis J. S. (1988) Assembly processes in vertebrate skeletal thick filament formation.Annu. Rev. Biophys. Chem. 17, 217–235.

    Article  CAS  Google Scholar 

  • De Lozanne A. and Spudich J. A. (1987) Disruption of theDictyostelium myosin heavy chain gene by homologous recombination.Science 236, 1086–1091.

    Article  PubMed  Google Scholar 

  • Dibb N. J., Brown D. M., Karn J., Moerman D. G., Bolten S. L., and Waterston R. H. (1985) Sequence analysis of mutations that affect the synthesis, assembly and enzymatic activity of theunc-54 myosin heavy chain ofCaenorhabditis elegans.J. Mol. Biol. 183, 543–551.

    Article  PubMed  CAS  Google Scholar 

  • Dibb N. J., Maruyama I. N., Krause M., and Karn J. (1989) Sequence analysis of the completeCaenorhabditis elegans myosin heavy chain gene family.J. Mol. Biol. 205, 603–613.

    Article  PubMed  CAS  Google Scholar 

  • Eide D. and Anderson P. (1985) The gene structures of spontaneous mutations affecting aCaenorhabditis elegans myosin heavy chain gene.Genetics 109, 67–79.

    PubMed  CAS  Google Scholar 

  • Emerson C. P. and Bernstein S. I. (1987) Molecular genetics of myosin.Annu. Rev. Biochem. 56, 695–726.

    Article  PubMed  CAS  Google Scholar 

  • Epstein H. F. (1986) Differential roles of myosin isoforms in filament assembly.UCLA Symp. Mol. Cell. Biol. New Ser. 29, 653–666.

    CAS  Google Scholar 

  • Epstein H. F. (1988a) Modulation of myosin assembly.UCLA Symp. Mol. Cell Biol. New Ser. 93, 207–219.

    Google Scholar 

  • Epstein H. F. (1988b) Modulation of myosin assembly.Bioessays 9, 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Epstein H. F. and Thomson J. N. (1974) Temperature sensitive mutation affecting myofilament assembly inCaenorhabditis elegans.Nature 250, 579–580.

    Article  PubMed  CAS  Google Scholar 

  • Epstein H. F., Berliner G. C., Casey D. L., and Ortiz I. (1988) Purified thick filaments from the nematodeCaenorhabditis elegans: evidence for multiple proteins associated with core structures.J. Cell Biol. 106, 1985–1995.

    Article  PubMed  CAS  Google Scholar 

  • Epstein H. F., Berman S. A., and Miller D. M. III (1982a) Myosin synthesis and assembly in nematode body-wall muscle, inMuscle Development: Molecular and Cellular Control, Pearson M. and Epstein H. F., eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 7–14.

    Google Scholar 

  • Epstein H. F., Miller D. M., III, Ortiz I., and Berliner, G. C. (1985) Myosin and paramyosin are organized about a newly identified core structure.J. Cell Biol. 100, 904–915.

    Article  PubMed  CAS  Google Scholar 

  • Epstein H. F., Ortiz I., and Berliner G. C. (1987) Assemblages of multiple thick filaments in nematode mutants.J. Muscle Res. Cell. Motil. 8, 527–536.

    Article  PubMed  CAS  Google Scholar 

  • Epstein H. F., Ortiz I., and Mackinnon L. A. T. (1986) The alteration of myosin isoform compartmentation in specific mutants ofCaenorhabditis elegans.J. Cell. Biol. 103, 985–993.

    Article  PubMed  CAS  Google Scholar 

  • Epstein H. F., Waterston R. H., and Brenner S. (1974) A mutant affecting the heavy chain of myosin inCaenorhabditis elegans.J. Mol. Biol. 90, 291–300.

    Article  PubMed  CAS  Google Scholar 

  • Gadasi H. and Korn E. D. (1980) Evidence for differential intracellular localization of the Acanthamoeba myosin isoenzymes.Nature 286, 452–456.

    Article  PubMed  CAS  Google Scholar 

  • Garcea R. L., Schachat F., and Epstein H. F. (1978) Coordinate synthesis of two myosins in wild-type and mutant nematode muscle during larval development.Cell 15, 421–428.

    Article  PubMed  CAS  Google Scholar 

  • Geisselsoder J., Chidambaram M., and Goldstein R. (1978) Transcriptional control of capsid size in the P2:P4 bacteriophage system.J. Mol. Biol. 126, 447–456.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg A. F. and Chang T. W. (1978) Regulation and significance of amino acid metabolism in skeletal muscle.Fed. Proc. 37, 2301–2307.

    PubMed  CAS  Google Scholar 

  • Goldberg A. L., Griffin G. E., and Dice J. F. (1977) Regulation of protein turnover in normal and dystrophic muscle, inPathogenesis of Human Muscular Dystrophies, Rowland L. P., ed., Excerpta Medica, Amsterdam, pp. 376–385.

    Google Scholar 

  • Gossett L. A., Hecht R. M., and Epstein H. F. (1982) Muscle differentiation in normal and cleavage-arrested mutant embryos ofCaenorhabditis elegans.Cell 30, 193–204.

    Article  PubMed  CAS  Google Scholar 

  • Grove B. K., Cerny L., Perriard J-C., and Eppenberger H. M. (1985) Myomesin and M-protein: expression of two M-band proteins in pectoral muscle and heart during development.J. Cell Biol. 101, 1413–1421.

    Article  PubMed  CAS  Google Scholar 

  • Harrington W. F., Burke, M., and Barton J. S. (1972) Association of myosin to form contractile systems.Cold Spring Harbor Symp. Quart. Biol. 37, 77–85.

    Google Scholar 

  • Harris H. E. and Epstein H. F. (1977) Myosin and paramyosin ofCaenorhabditis elegans: Biochemical and structural properties of wild-type and mutant proteins.Cell 10, 709–719.

    Article  PubMed  CAS  Google Scholar 

  • Honda S. and Epstein H. F. (1990) Modulation of muscle gene expression inCaenorhabditis elegans: Differential regulation of transcripts, mRNAs, and polypeptides for thick filament proteins during nematode development.Proc. Natl. Acad. Sci. USA 87, 876–880.

    Article  PubMed  CAS  Google Scholar 

  • Huszar G. (1972) Amino acid sequences around the two ε-N-trimethyllysine residues in rabbit skeletal muscle myosin.J. Biol. Chem. 247, 4057–4062.

    PubMed  CAS  Google Scholar 

  • Huszar G. and Elzinga M. (1973) Homologous methylated and nonmethylated histidine peptides in skeletal and cardiac myosins.J. Biol. Chem. 247, 745–753.

    Google Scholar 

  • Huxley H. E. (1963) Electron microscopy studies of native and synthetic protein filaments from striated muscle.J. Mol. Biol. 7, 281–308.

    CAS  Google Scholar 

  • Huxley H. E. (1969) The mechanism of muscular contraction.Science 164, 1356–1366.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen A. O., Kalinins V. I., Zubryzycka E., and MacLennan D. H. (1977) Assembly of the sarcoplasmic reticulum.J. Cell Biol. 74, 287–298.

    Article  PubMed  CAS  Google Scholar 

  • Kagawa H., Gengyo K., McLachlan A. D., Brenner S., and Karn J. (1989) The paramyosin gene (unc-15) ofCaenorhabditis elegans: Molecular cloning, nucleotide sequence and models for thick fila- ment assembly.J. Mol. Biol. 207, 311–333.

    Article  PubMed  CAS  Google Scholar 

  • Karn J., Dibb N. J., and Miller D. M. (1985) Cloning nematode myosin genes, inCell and Muscle Motility, Shay J., ed., vol. 6, Plenum Press, New York, pp. 185–237.

    Google Scholar 

  • Karn J., McLachlan A. D., and Barnett L. (1982),Unc-54 myosin heavy-chain gene ofCaenorhabditis elegans: Genetics, sequence, structure, inMuscle Development: Molecular and Cellular Control, Pearson M. and Epstein H. F., eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 129–142.

    Google Scholar 

  • Katsura I. (1987) Determination of bacteriophage 1 tail length by a protein ruler.Nature 327, 73–75.

    Article  PubMed  CAS  Google Scholar 

  • Kensler R. W. and Stewart M. (1983) Frog skeletal muscle thick filaments are three-stranded.J. Cell Biol. 96, 1797–1802.

    Article  PubMed  CAS  Google Scholar 

  • Knecht D. A. and Loomis W. F. (1987) Antisense RNA inactivation of myosin heavy chain gene expression inDictyostelium discoideum.Science 236, 1081–1086.

    Article  PubMed  CAS  Google Scholar 

  • Kordeli E., Cartaud J., Nghiem H-O., Devilliers-Thiérry A., and Changeux J-P. (1989) Asynchronous assembly of the acetylcholine receptor and of the 43-kDv, protein in the postsynaptic membrane of developingTorpedo marmorata electrocyte.J. Cell Biol. 108, 127–139.

    Article  PubMed  CAS  Google Scholar 

  • Kuczmarski E. R. and Spudich J. A. (1980) Regulation of myosin self-assembly: phosphorylation ofDictyostelium heavy chain inhibits formation of thick filaments.Proc. Natl. Acad. Sci. USA 71, 7292–7296.

    Article  Google Scholar 

  • Levine R. J. C., Elfvin M., Dewey M. M., and Walcott B. (1976) Paramyosin in invertebrate muscles II. Contentin relation to structure and function.J. Cell Biol. 70, 273–279.

    Article  Google Scholar 

  • Lowey S., Slayter H. S., Weeds A., and Baker H. (1969) Substructure of the myosin molecule. I. Subfragments of myosin by enzymic digestion.J. Mol. Biol. 42, 1–29.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie J. M., Jr. and Epstein H. F. (1980) Paramyosin is necessary for determination of nematode thick filament in vivo.Cell 22, 747–755.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie J. M., Jr. and Epstein, H. F. (1981) Electron microscopy of nematode thick filaments.J. Ultrastruct. Res. 76, 277–285.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie J. M., Jr. Schachat F., and Epstein H. F. (1978a) Immunocytochemical localization of two myosins within the same muscle cells inCaenorhabditis elegans.Cell 15, 413–420.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie J. M., Jr. Garcea R. L., Zengel J. M., and Epstein H. F. (1978b) Muscle development inCaenorhabditis elegans mutants exhibiting retarded sarcomere construction.Cell 15, 751–762.

    Article  PubMed  CAS  Google Scholar 

  • MacLeod A. R., Karn J., and Brenner S. (1981) Molecular analysis of theunc-54 myosin heavy chain gene ofCaenorhabditis elegans.Nature 291, 386–390.

    Article  PubMed  CAS  Google Scholar 

  • MacLeod A. R., Waterston R. H., and Brenner S. (1977a) An internal deletion mutant of a myosin heavy chain inCaenorhabditis elegans.Proc. Natl. Acad. Sci. USA 74, 5336–5340.

    Article  PubMed  CAS  Google Scholar 

  • MacLeod A. R., Waterston R. H., Fishpool R. M., and Brenner S. (1977b) Identification of the structural genes for a myosin heavy-chain inCaenorhabditis elegans.J. Mol. Biol. 14, 133–140.

    Article  Google Scholar 

  • Masaki T. and Takaiti O. (1974) M-protein.J. Biochem. (Tokyo)75, 367–380.

    CAS  Google Scholar 

  • McLachlan A. D. and Karn J. (1983) Periodic features in the amino acid sequence of nematode myosin rod.J. Mol. Biol. 164, 605–626.

    Article  PubMed  CAS  Google Scholar 

  • Merlie J. P. and Lindstrom J. (1983) Assembly in vivo of mouse muscle acetylcholine receptor: identification of an a subunit species that may be an assembly intermediate.Cell 34, 747–757.

    Article  PubMed  CAS  Google Scholar 

  • Miller D. M. and Maruyama I. (1986) Thesup-3 locus is closely linked to a myosin heavy chain gene inCaenorhabditis elegans.UCLA Symp. Mol. Cell Biol. New Ser. 29, 629–638.

    CAS  Google Scholar 

  • Miller D. M. III, Ortiz I., Berliner G. C., and Epstein H. F. (1983) Differential localization of two myosins within nematode thick filaments.Cell 34, 477–490.

    Article  PubMed  CAS  Google Scholar 

  • Miller D. M., Stockdale F. E., and Karn J. (1986) Immunological identification of the genes encoding the four myosin heavy chain isoforms ofCaenorhabditis elegans.Proc. Natl. Acad. Sci. 83, 2305–2309.

    Article  PubMed  CAS  Google Scholar 

  • Moerman D. G., Benian G. M., and Waterston R. H. (1986) Molecular cloning of the muscle geneunc-22 inCaenorhabditis elegans by Tcl transposon tagging.Proc. Natl. Acad. Sci. USA 83, 2579–2583.

    Article  PubMed  CAS  Google Scholar 

  • Moerman D. G., Benian G. M., Barstead R. J., Schreifer L., and Waterston R. H. (1988) Identification and intracellular localization of theunc-22 gene product ofCaenorhabditis elegans.Genes Dev. 2, 93–105.

    Article  PubMed  CAS  Google Scholar 

  • Moerman D. G., Plurad S. Waterston R. H., and Baillie D. L. (1982) Mutations in theunc-54 myosin heavy chain gene ofCaenorhabditis elegans that alter contractility but not muscle structure.Cell 29, 773–781.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto K. and Harrington W. F. (1973) Isolation and composition of thick filaments from rabbit skeletal muscle.J. Mol. Biol. 77, 165–175.

    Article  PubMed  CAS  Google Scholar 

  • Niederman R. and Peters L. K. (1982) Native bare zone assemblage nucleates myosin filament assembly.J. Mol. Biol. 161, 505–517.

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell P. T. and Bernstein S. J. (1988) Molecular and ultrastructural defects in aDrosophila myosin heavy chain mutant in: differential effects on muscle function produced by similar thick filament abnormalities.J. Cell Biol. 107, 2601–2612.

    Article  PubMed  CAS  Google Scholar 

  • Otsuka A. J. (1986)sup-3 Suppression affects muscle structure and myosin heavy chain accumulation inCaenorhabditis elegans.UCLA Symp. Mol. Cell. Biol. New Ser. 29, 619–628.

    Google Scholar 

  • Pollard T. D. and Korn E. D. (1973) Acanthamoeba myosin I.J. Biol. Chem. 248, 4682–4690.

    PubMed  CAS  Google Scholar 

  • Reisler E., Smith C., and Seegan G. (1980) Myosin minifilaments.J. Mol. Biol. 143, 129–145.

    Article  PubMed  CAS  Google Scholar 

  • Riddle D. L. and Brenner S. (1978) Indirect suppression inCaenorhabditis elegans.Genetics 89, 299–314.

    PubMed  CAS  Google Scholar 

  • Saad A. D., Pardee J. D., and Fischman D. A. (1987) Dynamic exchange of myosin molecules between thick filaments.Proc. Natl. Acad. Sci. USA 83, 9483–9487.

    Article  Google Scholar 

  • Schachat, F., Garcea R. L., and Epstein H. F. (1978) Myosins exist as homodimers of heavy chains: demonstration with specific antibody purified by nematode mutant myosin affinity chromatography.Cell 15, 405–411.

    Article  PubMed  CAS  Google Scholar 

  • Schachat F., Harris H. E., and Epstein H. F. (1977) Two homogeneous myosins in body-wall muscle ofCaenorhabditis elegans.Cell 10, 721–728.

    Article  PubMed  CAS  Google Scholar 

  • Scholey J. M., Taylor K. A., and Kendrick-Jones J. (1980) Regulation of non-muscle assembly by calmodulin-dependent light chain kinase.Nature 287, 233–235.

    Article  PubMed  CAS  Google Scholar 

  • Schreifer L. and Waterston R. H. (1989) Phosphorylation of the N-terminal region ofCaenorhabditis elegans paramyosin.J. Mol. Biol. 207, 451–454.

    Article  Google Scholar 

  • Showe K. and Onorato L. (1978) Kinetic factors and form determination of the head of bacteriophage T4.Proc. Natl. Acad. Sci. USA 75 4165–4169.

    Article  PubMed  CAS  Google Scholar 

  • Starr R. and Offer G. (1973) Polarity of the myosin molecule.J. Mol. Biol. 81, 17–31.

    Article  PubMed  CAS  Google Scholar 

  • Strehler E. E., Pelloni G., Heizmann C. W. and Eppenberger H. M. (1980) Biochemical and ultrastructural aspects of M 165,000 M-protein in cross-striated chicken muscle.J. Cell Biol. 86, 775–783.

    Article  PubMed  CAS  Google Scholar 

  • Sulston J. E. and Brenner S. (1974) The DNA ofCaenorhabditis elegans.Genetics 77, 95–104.

    PubMed  CAS  Google Scholar 

  • Szent-Györgyi A. G., Cohen C., and Kendrick-Jones J. (1971) Paramyosin and the filaments of molluscan “catch muscles.” II. Native filaments: isolation and characterization.J. Mol. Biol. 56, 239–258.

    Article  PubMed  Google Scholar 

  • Taurmino J., Wolitzky B. A., Takeyasa K., Tamkun M. M., and Fambrough D. M. (1989) Up-regulation of the sodium pump in primary chick muscle cultures.UCLA Symp. Mol. Cell Biol. New Ser. 93, 327–334.

    Google Scholar 

  • Taylor L. D. and Bandman E. (1989) Distribution of fast myosin heavy chain isoforms in thick filaments of developing chicken pectoral muscle.J. Cell Biol. 108, 533–542.

    Article  PubMed  CAS  Google Scholar 

  • Trybus K. M. and Lowey S. (1987) Assembly of smooth muscle myosin minifilaments: effects of phosphorylation and nucleotide binding.J. Cell. Biol. 105, 3007–3014.

    Article  PubMed  CAS  Google Scholar 

  • Turner D. C., Walliman T., and Eppenberger H. M. (1973) A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase.Proc. Natl. Acad. Sci. USA 70, 702–705.

    Article  PubMed  CAS  Google Scholar 

  • Warrick H. M. and Spudich J. A. (1987) Myosin: structure and function in cell motility.Ann. Rev. Cell Biol. 3, 379–422.

    PubMed  CAS  Google Scholar 

  • Waterston R. H. (1988) Muscle, inThe Nematode Caenorhabditis elegans, W. B. Wood, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor New York, pp. 281–335.

    Google Scholar 

  • Waterston R. H. (1989) The minor myosin heavy chain, mhcA, ofCaenorhabditis elegans is necessary for the initiation of thick filament assembly.EMBO J. 8, 3429–3436.

    PubMed  CAS  Google Scholar 

  • Waterson R. H., Epstein H. F., and Brenner S. (1974) Paramyosin inCaenorhabditis elegans.J. Mol. Biol. 90, 285–290.

    Article  Google Scholar 

  • Waterston R. H., Thomson J. N., and Brenner S. (1980) Mutants with altered muscle structure inCaenorhabditis elegans.Dev. Biol. 77, 271–302.

    Article  PubMed  CAS  Google Scholar 

  • Waterston R. H., Fishpool R. M., and Brenner S. (1977) Mutants affecting paramyosin inCaenorhabditis elegans.J. Mol. Biol. 117, 679–697.

    Article  PubMed  CAS  Google Scholar 

  • Waterston R. H. and Brenner S. (1978) A suppressor mutation in the nematode acting on specific alleles of many genes.Nature 275, 715–719.

    Article  PubMed  CAS  Google Scholar 

  • Waterston R. H., Moerman D. G., Baillie D. L., and Lane T. R. (1982) Mutations affecting myosin heavy chain accumulation and function in the nematodeCaenorhabditis elegans, inDisorders of the Motor Unit, Schotland D. M., ed., John Wiley, New York, pp. 747–760.

    Google Scholar 

  • Wenderoth M. P. and Eisenberg B. R. (1987) Heterogeneous distribution of nascent heavy chains into thick filaments of cardiac myocytes in thyroid treated rabbits.J. Cell. Biol. 105, 2971–2780.

    Article  Google Scholar 

  • Whalen R. G., Butler-Browne G. S., Pinset C., Toutant M., Watkins S. C., Ajioka J., Laurent C., McCormick D., and Riley G. P. (1986) Control of myosin isoform expression during skeletal muscle development in rodents.UCLA Symp. Mol. Cell. Biol., New Ser. 29, 237–251.

    Google Scholar 

  • Wray J. (1979) Structure of the backbone in myosin filaments of muscle.Nature 277, 37–40

    Article  PubMed  CAS  Google Scholar 

  • Zengel J. M. and Epstein H. F. (1980a) Identification of genetic elements associated with muscle structure in the nematodeCaenorhabditis elegans.Cell Motil. 1, 73–97.

    Article  PubMed  CAS  Google Scholar 

  • Zengel J. M. and Epstein H. F. (1980b) Mutants altering coordinate synthesis of specific myosins during nematode muscle development.Proc. Natl. Acad. Sci. USA 77, 852–856.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, H.F. Genetic analysis of myosin assembly inCaenorhabditis elegans . Mol Neurobiol 4, 1–25 (1990). https://doi.org/10.1007/BF02935583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935583

Index Entries

Navigation