Skip to main content
Log in

Mechanisms of synaptic plasticity

Changes in postsynaptic densities and glutamate receptors in chicken forebrain during maturation

  • Basic Molecular Aspects of Synaptic Plasticity
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We have shown that the synapse maturation phase of synaptogenesis is a model for synaptic plasticity that can be particularly well-studied in chicken forebrain because for most forebrain synapses, the maturation changes occur slowly and are temporally well-separated from the synapse formation phase. We have used the synapse maturation phase of neuronal development in chicken forebrain to investigate the possible link between changes in the morphology and biochemical composition of the postsynaptic density (PSD) and the functional properties of glutamate receptors overlying the PSD. Morphometric studies of PSDs in forebrains and superior cervical ganglia of chickens and rats have shown that the morphological features of synapse maturation are characteristic of a synaptic type, but that the rate at which these changes occur can vary between types of synapses within one animal and between synapses of the same type in different species. We have investigated, during maturation in the chicken forebrain, the properties of theN-methyl-d-aspartate (NMDA) subtype of the glutamate receptors, which are concentrated in the junctional membranes overlying thick PSDs in the adult. There was no change in the number of NMDA receptors during maturation, but there was an increase in the rate of NMDA-stimulated uptake of45Ca2+ into brain prisms. This functional change was not seen with the other ionotropic subtypes of the glutamate receptor and was NMDA receptor-mediated. The functional change also correlated with the increase in thickness of the PSD during maturation that has previously been shown to be due to an increase in the amount of PSD associated Ca2+-calmodulin stimulated protein kinase II (CaM-PK II). Our results provide strong circumstantial evidence for the regulation of NMDA receptors by the PSD and implicate changing local concentrations of CaM-PK II in this process.

The results also indicate some of the ways in which properties of existing synapses can be modified by changes at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghajanian G. N. and Bloom F. E. (1967) The formation of synaptic junctions in developing rat brain: a quantitative electron microscopic study.Brain Res. 6, 716–727.

    Article  PubMed  CAS  Google Scholar 

  • Barday A. N. (1979) Localisation of the Thy-1 antigen in the cerebellar cortex of rat brain by immunofluorescence during postnatal development.J. Neurochem. 32, 1249–1259.

    Article  Google Scholar 

  • Bloom F. E. and Aghajanian G. K. (1966) Cytochemistry of synapses: selective staining for electron microscopy.Science 154, 1575–1577.

    Article  PubMed  CAS  Google Scholar 

  • Blue M. E. and Parnavelas J. G. (1983) The formation and maturation of synapses in the visual cortex of the rat II. Quantitative analysis.J. Neuropsychol. 12, 697–712.

    CAS  Google Scholar 

  • Carlin R. K. and Siekevitz P. (1983) Plasticity in the central nervous system: do synapses divide?Proc. Natl. Acad. Sci. USA 80, 3517–3521.

    Article  PubMed  CAS  Google Scholar 

  • Carlin R. K. and Siekevitz P. (1984) Characterisation of Na+-independent GABA and flunitrazepam binding sites in preparations of synaptic membranes and postsynaptic densities isolated from canine cerebral cortex and cerebellum.J. Neurochem. 43, 1011–1017.

    Article  PubMed  CAS  Google Scholar 

  • Collingridge G. L. and Singer W. (1990) Excitatory amino acid receptors and synaptic plasticity.Trends Pharmacol. Sci. 11, 290–296.

    Article  PubMed  CAS  Google Scholar 

  • Colonnier M. (1968) Synaptic patterns of different cell types in the different laminae of the visual cortex. An electron microscopic study.Brain Res. 9, 268–287.

    Article  PubMed  CAS  Google Scholar 

  • Cotman C. W. and Kelly P. T. (1980) Macromolecular architecture of CNS synapses.The Cell Surface and Neuronal Function. Cotman C. W., Poste G., and Nicolson G. L. eds., Elsevier, North Holland Biomedical Press, Amsterdam, pp. 505–533.

    Google Scholar 

  • Cotman C. W. and Nieto-Sampedro M. (1984) Cell biology of synaptic plasticity.Science 225, 1287–1294.

    Article  PubMed  CAS  Google Scholar 

  • Crick F. (1982) Do dendritic spines twitch?Trends Neurosci. 5, 44–46.

    Article  Google Scholar 

  • Dyson S. E. and Jones D. G. (1984) Synaptic remodelling during development and maturation: Functional differentiation and splitting as a mechanism for modifying connectivity.Brain Res. 315, 125–137.

    PubMed  CAS  Google Scholar 

  • Erondu N. E. and Kennedy M. B. (1985) Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain.J. Neurosci. 5, 3270–3277.

    PubMed  CAS  Google Scholar 

  • Fagg G. E. and Matus A. (1984) Selective association of N-methylaspartate and quisqualate types of L-glutamate receptor with brain postsynaptic densities.Proc. Natl. Acad. Sci. USA 81, 6876–6880.

    Article  PubMed  CAS  Google Scholar 

  • Foster A. C. and Wong E. H. F. (1987) The novel anticonvulsant MK-801 binds to the activated state of the N-methyl-D-aspartate receptor in rat brain.Br. J. Pharmacol. 91, 403–409.

    PubMed  CAS  Google Scholar 

  • Fu S. C., Cruz T. F., and Gurd J. W. (1981) Development of synaptic glycoproteins: Effective postnatal age on the synthesis and concentration of synaptic membrane and synaptic junctional fucosyl and sialyl glycoproteins.J. Neurochem. 36, 1338–1351.

    Article  PubMed  CAS  Google Scholar 

  • Gulley R. L. and Reese T. S. (1981) Cytoskeletal organisation at the postsynaptic complex.J. Cell Biol. 91, 298–302.

    Article  PubMed  CAS  Google Scholar 

  • Gurd J. W. (1982) Molecular characterisation of synapses in the central nervous system.Molecular Approaches to Neurobiology. Brown I. R., ed. Academic, New York, pp. 99–130.

    Google Scholar 

  • Gurd J. W. (1989) Glycoproteins of the synapse.Neurobiology of Glycoconjugates. Margolis R. K. and Margolis R. U., eds. Plenum, New York, pp. 219–242.

    Google Scholar 

  • Heath J. W., Glenfield P. J., and Rostas J. A. P. (1992) Structural maturation of synapses in the rat superior cervical ganglion continues beyond four weeks of age.Neurosci. Lett. in press.

  • Horn G., Bradley P., and McCabe B. J. (1985) Changes in the structure of synapses associated with learning.J. Neurosci. 5, 3161–3168.

    PubMed  CAS  Google Scholar 

  • Kavanagh J. M., Dodd P. R., and Rostas J. A. P. (1992a) [3H]MK-801 binding in immature and mature chicken forebrainNeurosci. Lett. in press.

  • Kavanagh J. M., Powis D. A., Dodd P. R., and Rostas J. A. P. (1992b) NMDA receptor function in chicken forebrain during maturation.Mol. Neuropharmacol., in press.

  • Kelly, P. T. and Cotman C. W. (1981) Developmental changes in morphology and molecular composition of isolated synaptic junctional structures.Brain Res. 206, 251–271.

    Article  PubMed  CAS  Google Scholar 

  • Kelly P. T., Cotman C. W., Gentry C., and Nicolson G. (1976) Distribution and mobility of lectin receptors on synaptic membranes of identified neurons in the central nervous system.J. Cell Biol. 71, 487–496.

    Article  PubMed  CAS  Google Scholar 

  • Kelly P. T., Shields S., Conway K., Yip R., and Burgin K. (1987) Developmental changes in calmodulin-kinase II activity at brain synaptic junctions: Alterations in holoenzyme composition.J. Neurochem. 49, 1927–1940.

    Article  PubMed  CAS  Google Scholar 

  • Kelly P. T. and Vernon P. (1985) Changes in subcellular distribution of calmodulin kinase II during brain development.Dev. Brain Res. 18, 211–224.

    Article  CAS  Google Scholar 

  • Koszka C., Brent V. A., and Rostas J. A. P. (1991) Developmental changes in phosphorylation of MAP-2 and synapsin I in cytosol and taxol polymerized microtubules from chicken brain.Neurochem. Res. 15, 637–644.

    Article  Google Scholar 

  • MacDermott A. B., Mayer M. L., Westbrook G. L., Smith S. J., and Barker J. L. (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones.Nature 321, 519–522.

    Article  PubMed  CAS  Google Scholar 

  • McCabe B. J. and Horn G. (1988) Learning and memory: Regional changes in N-methyl-D-aspartate receptors in the chick brain after imprinting.Proc. Natl. Acad. Sci. USA 85, 2849–2853.

    Article  PubMed  CAS  Google Scholar 

  • Markus E. J., Petit T. L., and LeBoutillier J. B. (1987) Synaptic structural changes during development and ageing.Dev. Brain Res. 35, 239–248.

    Article  Google Scholar 

  • Matus A., Pehling G., and Wilkinson D. (1981). Gamma-aminobutyric acid receptors in brain postsynaptic densities.J. Neurobiol. 12, 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Matus A. and Walters B. B. (1976) Type I and II synaptic junctions: Differences in distribution of Concanavalin A binding sites and stability of the junctional adhesion.Brain Res. 108, 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Mishina M., Takai T., Imoto K., Noda M., Takahashi T., Numa S., Methfessel C., and Sakmann B. (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor.Nature 321, 406–411.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan D. T. and Cotman C. W. (1986) Identification and properties of N-methyl-d-aspartate receptors in rat brain synaptic plasma membranes.Proc. Natl. Acad. Sci. USA 83, 7532–7536.

    Article  PubMed  CAS  Google Scholar 

  • Morris R. J. (1985) Thy-1 indeveloping nervous tissue.Dev. Neurosci. 7, 133–160.

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sampedro M., Hoff S. F., and Cotman C. W. (1982) Perforated postsynaptic densities: probable intermediates in synapse turnover.Proc. Natl. Acad. Sci. USA 79, 5718–5722.

    Article  PubMed  CAS  Google Scholar 

  • Ouimet C. C., McGuinness T. L., and Greengard P. (1984) Immunocytochemical localisation of calcium/calmodulin dependent protein kinase II in rat brain.Proc. Natl. Acad. Sci. USA 81, 5604–5608.

    Article  PubMed  CAS  Google Scholar 

  • Ransom R. W. and Stec N. L. (1988) cooperative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine, and polyamines.J. Neurochem. 51, 830–836.

    Article  PubMed  CAS  Google Scholar 

  • Riveros N. and Orrego F. (1986) N-methylaspartate-activated calcium channels in rat brain cortex slices. Effect of calcium channel blockers and of inhibitory and depressant substances.Neuroscience 17, 541–546.

    Article  PubMed  CAS  Google Scholar 

  • Rostas J. A. P. (1991) Molecular mechanisms of neuronal maturation: A model for synaptic plasticity.Neural and Behavioural Plasticity. Andrew R. J., ed. Oxford University Press, pp. 177–211.

  • Rostas J. A. P., Baker C. M., Weinberger R. P., and Dunkley P. R. (1987) Changes in the pre-and postsynaptic calmodulin stimulated protein kinase II during development in chicken forebrain.J. Neurochem. 48, 515A.

    Google Scholar 

  • Rostas J. A. P., Brent V. A., and Guldner F. H. (1984) The maturation of postsynaptic densities in chicken forebrain.Neurosci. Lett. 45, 297–304.

    Article  PubMed  CAS  Google Scholar 

  • Rostas J. A. P. and Dunkley P. R. (1992) Multiple forms and distribution of calcium/calmodulin-stimulated protein kinase II in brain.J. Neurochem. in press

  • Rostas J. A. P., Kelly P. T., Pesin R. H., and Cotman C. W. (1979) Protein and glycoprotein composition of synaptic junctions prepared from discrete synaptic regions and different regions.Brain Res. 168, 151–167.

    Article  PubMed  CAS  Google Scholar 

  • Rostas J. A. P., Weinberger R. P., and Dunkley P. R. (1986) Multiple pools and multiple forms of calmodulin stimulated protein kinase during development: Relationship to postsynaptic densities.Prog. Brain Res. 69, 355–371.

    Article  PubMed  CAS  Google Scholar 

  • Sedman G. L., Jeffrey P. L., Austin L., and Rostas J. A. P. (1986) The metabolic turnover of the major proteins of the postsynaptic density.Mol. Brain Res. 1, 221–230.

    Article  CAS  Google Scholar 

  • Siekevitz P. (1985) The postsynaptic density: A possible role in long lasting effects in the central nervous system.Proc. Natl. Acad. Sci. USA 82, 3494–3498.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair C. M., Greig D. L., and Jeffrey P. L. (1987) Developmental appearance of Thy-1 antigen in the avian nervous system.Dev. Brain Res. 35, 43–53.

    Article  CAS  Google Scholar 

  • Smolen A. J. (1981) Postnatal development of ganglionic neurons in the absence of preganglionic input: Morphological observations on synapse formation.Dev. Brain Res. 1, 49–58.

    Article  Google Scholar 

  • Snider W. D. (1986) Rostrocaudal differences in dendritic growth and synaptogenesis in rat sympathetic chain ganglia.J. Comp. Neurol. 244, 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Sommer B., Keinanen K., Verdoorn T. A., Wisden W., Burnashev N., Herb A., Kohler M., Takagi T., Sakmann B., and Seeburg P. H. (1990) Flip and flop: A cell-specific functional switch in glutamate-operated channels of the CNS.Science 249, 1580–1585.

    Article  PubMed  CAS  Google Scholar 

  • Walaas S. I., Nairn A. C., and Greengard P. (1983a) Regional distribution of calcium and cyclic AMP regulated protein phosphorylation systems in mammalian brain I: Particulate systems.J. Neurosci. 3, 291–301.

    PubMed  CAS  Google Scholar 

  • Walaas S. I., Nairn A. C., and Greengard P. (1983b) Regional distribution of calcium and cyclic AMP regulated protein phsophorylation systems in mammalian brain II: Soluble systems.J. Neurosci. 3, 302–311.

    PubMed  CAS  Google Scholar 

  • Weinberger R. P. and Rostas J. A. P. (1986) Subcellular distribution of a calmodulin dependent protein kinase activity in rat cerebral cortex during development.Dev. Brain Res. 29, 37–50.

    Article  CAS  Google Scholar 

  • Weinberger R. P. and Rostas J. A. P. (1988) Developmental changes in protein phosphorylation in chicken forebrain II: Calmodulin stimulated phosphorylation.Dev. Brain Res. 43, 259–272.

    Article  CAS  Google Scholar 

  • Wolff R. (1976) Quantitative analysis of topography and development of synapses in the visual cortex.Exp. Brain Res. Suppl. 1, 259–263.

    Google Scholar 

  • Wolff J. R. (1978) Ontogenic aspects of cortical architecture: Lamination.Architectonics of the Cerebral Cortex. M. A. B. Brazier and H. J. Petch, eds., Raven, New York, pp. 159–173.

    Google Scholar 

  • Wong E. H. F., Kemp J. A., Priestley T., Knight A. R., Woodruff G. N., and Iversen L. L. (1986) The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist.Proc. Natl. Acad. Sci. USA 83, 7104–7108.

    Article  PubMed  CAS  Google Scholar 

  • Wu K., Carlin R. K., Sachs L., and Siekevitz P. (1985) Existence of a Ca2+-dependent K+ channel in synaptic membrane and postsynaptic density fractions isolated from canine cerebral cortex and cerebellum, as determined by apamin binding.Brain Res. 360, 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Wu K., Carlin R. K., and Siekevitz P. (1986a) Binding of L-[3H]-glutamate to fresh or frozen synaptic membrane and postsynaptic density fractions isolated from cerebral cortex and cerebellum of fresh or frozen canine brain.J. Neurochem. 46, 831–841.

    Article  PubMed  CAS  Google Scholar 

  • Wu K., Sachs L., Carlin R. K., and Siekevitz P. (1986b) Characteristics of a Ca2+/calmodulin-dependent binding of the Ca2+ channel antagonist nitrendipine to a postsynaptic density fraction isolated from canine cerebral cortex.Mol. Brain Res. 1, 167–184.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rostas, J.A.P., Kavanagh, J.M., Dodd, P.R. et al. Mechanisms of synaptic plasticity. Mol Neurobiol 5, 203–216 (1991). https://doi.org/10.1007/BF02935546

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935546

Index Entries

Navigation